OUP user menu

Cerebral specialization and interhemispheric communication
Does the corpus callosum enable the human condition?

Michael S. Gazzaniga
DOI: http://dx.doi.org/10.1093/brain/123.7.1293 1293-1326 First published online: 1 July 2000

Summary

The surgical disconnection of the cerebral hemispheres creates an extraordinary opportunity to study basic neurological mechanisms: the organization of the sensory and motors systems, the cortical representation of the perceptual and cognitive processes, the lateralization of function, and, perhaps most importantly, how the divided brain yields clues to the nature of conscious experience. Studies of split-brain patients over the last 40 years have resulted in numerous insights into the processes of perception, attention, memory, language and reasoning abilities. When the constellation of findings is considered as a whole, one sees the cortical arena as a patchwork of specialized processes. When this is considered in the light of new studies on the lateralization of functions, it becomes reasonable to suppose that the corpus callosum has enabled the development of the many specialized systems by allowing the reworking of existing cortical areas while preserving existing functions. Thus, while language emerged in the left hemisphere at the cost of pre-existing perceptual systems, the critical features of the bilaterally present perceptual system were spared in the opposite half-brain. By having the callosum serve as the great communication link between redundant systems, a pre-existing system could be jettisoned as new functions developed in one hemisphere, while the other hemisphere could continue to perform the previous functions for both half-brains. Split-brain studies have also revealed the complex mosaic of mental processes that participate in human cognition. And yet, even though each cerebral hemisphere has its own set of capacities, with the left hemisphere specialized for language and speech and major problem-solving capacities and the right hemisphere specialized for tasks such as facial recognition and attentional monitoring, we all have the subjective experience of feeling totally integrated. Indeed, even though many of these functions have an automatic quality to them and are carried out by the brain prior to our conscious awareness of them, our subjective belief and feeling is that we are in charge of our actions. These phenomena appear to be related to our left hemisphere's interpreter, a device that allows us to construct theories about the relationship between perceived events, actions and feelings.

  • cerebral specialization
  • callosum
  • interhemispheric
  • interpreter
  • HERA = hemispheric encoding/retrieval asymmetry
  • LVF = left visual field
  • RVF = right visual field
  • SOA = stimulus-onset asynchrony
    View Full Text