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Bayesian ideal observer models quantify individuals’ context- and experience-dependent beliefs and expectations about their en-

vironment, which provides a powerful approach (i) to link basic behavioural mechanisms to neural processing; and (ii) to generate

clinical predictors for patient populations. Here, we focus on (ii) and determine whether individual differences in the neural

representation of the need to stop in an inhibitory task can predict the development of problem use (i.e. abuse or dependence)

in individuals experimenting with stimulants. One hundred and fifty-seven non-dependent occasional stimulant users, aged 18–24,

completed a stop-signal task while undergoing functional magnetic resonance imaging. These individuals were prospectively fol-

lowed for 3 years and evaluated for stimulant use and abuse/dependence symptoms. At follow-up, 38 occasional stimulant users

met criteria for a stimulant use disorder (problem stimulant users), while 50 had discontinued use (desisted stimulant users). We

found that those individuals who showed greater neural responses associated with Bayesian prediction errors, i.e. the difference

between actual and expected need to stop on a given trial, in right medial prefrontal cortex/anterior cingulate cortex, caudate,

anterior insula, and thalamus were more likely to exhibit problem use 3 years later. Importantly, these computationally based

neural predictors outperformed clinical measures and non-model based neural variables in predicting clinical status. In conclusion,

young adults who show exaggerated brain processing underlying whether to ‘stop’ or to ‘go’ are more likely to develop stimulant

abuse. Thus, Bayesian cognitive models provide both a computational explanation and potential predictive biomarkers of belief

processing deficits in individuals at risk for stimulant addiction.
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Introduction
An important goal of addiction research is to identify pre-

dictive biomarkers that can quantify the risk of future prob-

lem use for an individual subject. Occasional off-prescription

use of stimulants to enhance cognitive performance has re-

cently become an alarming trend among healthy young

adults, including highly functioning university students

(Herman-Stahl et al., 2006). Such experimentation with il-

legal stimulants (e.g. cocaine, methamphetamine) or medic-

ally prescribed stimulants to other parties (e.g. Adderall) is

associated with a higher risk of developing substance de-

pendence (Tapert et al., 2002; Elkashef and Vocci, 2003)

as well as pervasive executive deficits (Yücel et al., 2007;

Reske et al., 2011). The ability to identify early-on which

occasional users are likely to develop a substance use dis-

order, or to discontinue use, is therefore a critical step to

improve the efficiency of prevention efforts.

Bayesian ideal observer models can quantify individuals’

beliefs and expectations about their environment as a func-

tion of behavioural context and experienced choices and

outcomes. These models provide a way to understand

how the brain processes complex environments and how

the breakdown of this process can contribute to clinical

prediction of illness trajectory. In this approach, we infer

otherwise unknown beliefs in individuals regarding upcom-

ing events (e.g. occurrence of a particular stimulus) and

how such beliefs are updated based on past events experi-

enced by the observer. Such methods may be particularly

important for prediction research in at-risk populations

with very subtle or non-detectable behavioural deficits on

standard neuropsychological measures, which is the case

for occasional stimulant users (OSU). While significant ex-

ecutive deficits have been demonstrated in chronic stimu-

lant dependence (Salo et al., 2002; Monterosso et al., 2005;

Hester et al., 2007; Tabibnia et al., 2011), only subtle be-

havioural impairments in error monitoring and inhibitory

control (i.e. ability to withhold a prepotent action) have

been observed in OSU (Colzato et al., 2007; Reske et al.,

2011). Here, we use Bayesian model-based analysis of

event-related functional MRI data associated with baseline

inhibitory function in a stop-signal task to predict OSU

clinical status 3 years later. Based on previous studies

showing that healthy volunteers (Ide et al., 2013) and

OSU (Harlé et al., 2014) continuously alter their response

strategy in this inhibitory control paradigm, we hypothe-

sized that such computational neural variables would

perform significantly better than other variables, such as

non-computational task-based brain activity and clinical

measures (e.g. cumulative drug use), in predicting long-

term clinical status.

Although there are few neuroimaging studies of

OSU, stimulant dependence has been linked to reduced

functioning of dopamine transporters and abnormal metab-

olism in regions critical to inhibitory control, including

basal ganglia, anterior cingulate cortex (ACC), and other

prefrontal areas (Volkow et al., 1999; Bolla et al., 2004;

London et al., 2004; Kim et al., 2009). In inhibitory con-

trol paradigms, stimulant-dependent users show altered ac-

tivity in ACC and anterior insula, as well as right superior/

inferior frontal gyrus (Kaufman et al., 2003; Hester and

Garavan, 2004; Li et al., 2007; Nestor et al., 2011).

Given recent work implicating ACC and insula in coding

Bayesian prediction errors (i.e. difference between probabil-

ity of stop signal and actual trial type) in healthy non-users

(Ide et al., 2013) and OSU (Harlé et al., 2014), we hy-

pothesize that abnormal neural responses associated with

Bayesian prediction errors in those regions would lead to

difficulties in implementing cognitive control among OSU

and be particularly predictive of future problem use.

Materials and methods

Participants

The University of California, San Diego Human Subjects
Review Board, approved the study protocol. Over a 5-year
period, potential participants were recruited via Internet adver-
tisements, newspapers, and flyers (Reske et al., 2011). As a
result, 1025 individuals underwent detailed telephone screens,
of which 184 OSU met study inclusion criteria and provided
written informed consent to participate. OSU endorsed (i) 2 +
off-prescription uses of cocaine or amphetamines over the past
6 months; (ii) no lifetime stimulant dependence; (iii) no lifetime
stimulant use for medical reasons; and (iv) no treatment of
substance-related problems. Once enrolled, participants com-
pleted three sessions: (i) a baseline interview session to evaluate
clinical diagnoses and determine current patterns of drug use
(n = 184); (ii) a neuroimaging session examining brain and be-
haviour responses during decision-making (n = 158; 86%); and
(iii) a follow-up interview session 3 years later to determine
changes in clinical status and patterns of drug use (n = 157/
158).

Baseline interview session

Lifetime DSM-IV Axes I and II diagnoses, including substance
abuse and dependence (APA, 2013), were assessed by the
Semi-structured Assessment for the Genetics of Alcoholism II
(SSAGA II) (Bucholz et al., 1994). Diagnoses were based on
consensus meetings with a clinician specializing in substance
use disorders (M.P.P; see Supplementary material for exclusion
criteria). Information on current alcohol and nicotine use pat-
terns was also collected and participants completed question-
naires indexing personality and mood variables that have
previously been associated with drug use such as impulsivity,
sensation seeking, and depression, including the Barratt
Impulsiveness Scale (BIS-11) (Patton and Stanford, 1995), the
Sensation Seeking Scale (SSS-V) (Zuckerman and Link, 1968),
and the Beck Depression Inventory (BDI) (Beck et al., 1961).

Neuroimaging session

This session was completed within 2 weeks of the baseline
interview session. Participants were instructed to abstain
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from illicit substance use 572 h prior to this session and ab-
stinence was determined by urine toxicology screen. They com-
pleted six blocks of a stop-signal task while undergoing
functional MRI. On ‘go’ trials (n = 216), they had to press
as quickly as possible the left button when an ‘X’ appeared
and the right button when an ‘O’ appeared. On ‘stop’ trials
(i.e. whenever they heard a tone during a trial; n = 72), they
were instructed not to press either button (Fig. 1). Prior to
scanning, participants’ mean reaction time from stimuli onset
was determined to compute six levels of stop signal delay
(SSD), providing an individually customized range of difficulty
(for more details see Matthews et al., 2005; Harlé et al.,
2014).

Bayesian model of probabilistic prediction

In recent work (Shenoy and Yu, 2011; Shenoy et al., 2011; Ide
et al., 2013), stopping behaviour adjustments has been well
captured by a Bayes optimal decision-making model. This
model assumes that an individual updates the previous prob-
ability of encountering stop trials, P(stop), on a trial-by-trial
basis based on trial history and adjusts decision policy as a
function of P(stop), with systematic consequences for go reac-
tion time and stop accuracy in the upcoming trial. A higher
predicated P(stop) is associated with a slower go reaction time
and a higher likelihood of correctly stopping on a stop trial in
healthy subjects (Ide et al., 2013; Harlé et al., 2014).

To model the trial-by-trial adjustment of prior expectations,
we used a Bayesian hidden Markov model adapted from the
Dynamic Belief Model (DBM) (Yu and Cohen, 2009; Ide et al.,
2013) (Fig. 2A). The model makes the following assumptions
about subjects’ internal beliefs regarding task structure: on
each trial k, there is a hidden probability rk of observing a
stop signal (sk = 1 for stop trial) and probability 1 � rk of
observing a go trial (sk = 0); rk is the same as rk � 1 with

probability �, and resampled from a prior beta distribution
p0(r) with probability 1 � �. Predictive probability of trial k
being a stop trial, Pk(stop): = P(sk = 1 | sk � 1), where
sk = (s1, . . . , sk) is a vector of all past trial outcomes, 1 for
stop trials and 0 go trials, can be computed as:

P sk ¼ 1jSk�1ð Þ ¼

Z
P sk ¼ 1jrkð Þp rkjSk�1ð Þdrk

¼

Z
rkp rkjSk�1ð Þdrk ¼ hrkjSk�1i

Predictive probability of seeing a stop trial, Pk(stop), is the
mean of the predictive distribution p(rk|sk � 1), which, by mar-
ginalizing over the uncertainty of whether rk has changed from
the last trial, becomes a mixture of the previous posterior dis-
tribution and a fixed prior distribution, with � and 1�� acting
as the mixing coefficients, respectively:

p rkjSk�1ð Þ ¼ �p rk�1jSk�1ð Þ þ 1� �ð Þp0 rkð Þ

Posterior distribution over stop trial frequency is updated ac-
cording to Bayes’ rule:

p rkjSkð Þ/P skjrkð Þp rkjSk�1ð Þ

Parameters for the beta distribution p0(r) and � were kept
constant across all subjects and set based on previous fits of
subjects’ task expectations [i.e. Beta(2.5,7.5; mean = 0.25], and
� = 0.8] (Shenoy and Yu, 2011; Ide et al., 2013; Harlé et al.,
2014). Given these parameters and sequence of observed stop/
go trials (pseudo-randomized, fixed across subjects), we com-
puted the corresponding sequence of subjective P(stop) prob-
abilities for the trial sequence participants experienced.
In subsequent functional MRI analyses, the trial-by-trial esti-
mation of P(stop) = hrki (i.e. representing the most up-to-date
estimated likelihood of encountering a stop signal based on
all previous trials) was used as a parametric regressor in

Figure 1 Stop signal task. At the onset of each trial, either an ‘X’ or an ‘O’ appeared on a black background back-projected to the MRI room.

Participants were instructed to press, as quickly as possible, the left button when an ‘X’ appeared, and the right button when an ‘O’ appeared.

They were also instructed not to press either mouse button whenever they heard a tone during a trial (stop trials). Each trial lasted 1300 ms and

each trial was separated by 200-ms interstimulus intervals (blank screen). Individual response latency was used to denote the period of inhibitory

processing and provided a subject-dependent jittered reference function. Participants performed six blocks of the task, each containing a total of

48 trials (12 stop and 36 non-stop trials in each block). Trial order was pseudorandomized throughout the task. Prior to scanning, participants

performed the stop task in a behavioural testing session to determine their mean reaction time from ‘X’ and ‘O’ stimuli onset. Such individual

measures were used to determine the stop signal delay (SSD) for the six different stop trial types. Specifically, stop signals were delivered at 0 (RT-

0), 100 (RT-100), 200 (RT-200), 300 (RT-300), 400 (RT-400), or 500 (RT-500) ms less than the mean reaction time after the beginning of the trial,

thus providing a range of difficulty level.
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functional MRI analyses. Importantly, we examined whether
the model predictions would be sensitive to parameters � and
the prior distribution p0(r) at the individual level (Harlé et al.,
2014) and found that produced P(stop) values were highly
correlated across parameter settings and did not differ signifi-
cantly between individual level or group level settings (r4 0.9;
R240.8). For this reason, we opted for a fixed parameter
setting across individuals. We also tested for potential clinical
group differences in parameter values, and found no significant
difference (i.e. the fixed setting value were optimal for both
groups).

Behavioural statistical analyses

For behavioural dependent variables with repeated measures
[e.g. trial-wise reaction times and error as a function of
P(stop)], we conducted hierarchical generalized mixed-effect
linear models treating subject as a random factor (with varying
intercepts and slopes) and other variables as fixed effects
(Baayen et al., 2008). A logit link function was used for

binary error data (i.e. performance accuracy section) (Jaeger,
2008). We report change in log likelihood ratio (following a
chi-squared distribution) and regression coefficients (when ap-
plicable) with associated t-test and P-values. While there is
currently no strong agreement on how to estimate degrees of
freedom for mixed-effect generalized linear models, the re-
ported degrees of freedom and P-values for regression coeffi-
cients of interest were estimated based on the Satterthwaite
(1946) approximation. These statistics were obtained using R
statistics [http://cran.r-project.org; lmerTest library, lmer()].
This method is more conservative than another common
method used in standard statistical packages, which estimates
degrees of freedom by subtracting the number of fixed effects
from the total number of observations for each parameter
(Baayen et al., 2008).

First-level functional MRI analyses

Using a fast event-related functional MRI design, six T2*-
weighted echo planar imaging functional runs were collected
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Figure 2 Stop-signal task behavioural results. (A) Bayesian hidden Markov model used, a version of the Dynamic Belief Model (Yu and

Cohen, 2009), which computes trial-wise sequential predictions about the frequency of stop trials. The prior probability of encountering a stop

signal on trial k, Pk(stop), is compared with the actual trial outcome (0 = go; 1 = stop) to produce a signed prediction error [SPE; i.e. outcome-

Pk(stop)] or unsigned prediction error [UPE; i.e. |outcome � Pk(stop)|], which are combined with the prior to produce a new updated prior for

the next trial k + 1. (B) Distribution of Go reaction time for each group (red: PSU = problem stimulant users, mean Go reaction time = 578 ms;

black: DSU = desisted stimulant users, mean Go reaction time = 634 ms). (C) Error rates by stop signal delay (SSD) for each group (red: PSU;

black: DSU; error bars = SEM); (D) Bayesian model prediction and behavioural data presented for each group: red/square for PSU (n = 38), black/

circles for DSU (n = 50). As predicted by Bayes optimal decision-making in the stop signal task, individuals’ Go reaction times (RT) was positively

correlated with trial-wise P(stop) model estimates in each group. DSU (black) and PSU (red) model lines represent best linear regression fit to

mean go reaction time. Error bars = SEM.
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for each participant, along with one T1-weighted anatomical
image (see Supplementary material for image acquisition and
preprocessing details).

In a first general linear model (GLM), three types of trials
[Go, Stop Success (SS), and Stop Error (SE)] were convolved
with a canonical haemodynamic response function. Each of
these predictors were entered both as linear regressors [multi-
plied by the mean of the computed P(stop) values across all
trials] and parametrically modulated (Büchel et al., 1998) by
trial-level P(stop) estimates. Such an approach allowed us to
isolate neural activations (and their potential predictive value
in subsequent prediction analyses) associated with both trial
type alone (i.e. categorical regressor) and P(stop). Thus, after
deconvolution, this model included six task regressors [three
categorical: Go, SS, SE; and three model-based parametric:
GoxPk(stop), SSxPk(stop), SExPk(stop)].

To assess updating processes related to P(stop), we created a
second GLM with trial-wise Bayesian signed prediction error
[i.e. SPE: (Outcome � P(stop)] and unsigned prediction error
[i.e. UPE: |Outcome � P(stop)|] included as parametric regres-
sors of interest. We distinguished these types of prediction
errors as they may provide different types of information im-
portant for adjusting behaviour. UPE represent an overall
degree of discrepancy between one’s internal model prediction
and actual outcome, that is a ‘goodness of fit’ measure of one’s
internal predictive model [in this case P(stop) estimation]. In
contrast, SPE provide additional information on the direction
of this discrepancy, which may be more relevant to orienting
or motivating the individual towards specific actions (e.g. Go
versus Stop). This second model also included a parametric
regressor modelling trial error (0 = correct or 1 = error) to con-
trol for performance error-related activity (Ide et al., 2013).
Both GLM models included a baseline regressor (consisting
of intertrial intervals and instruction phases), linear drift and
three motion regressors (pitch, yaw, roll) (Matthews et al.,
2005), as well as Go reaction times and SSD as parametric
regressors of no-interest. Images were spatially filtered
(Gaussian full-width at half-maximum 4 mm) to account for
individual anatomical differences. Anatomical and functional
images were manually transformed into Talairach space.

Individual subjects’ per cent signal change (%SC) scaled beta
weight values for five regressors/contrasts of interest from
these two first level models were extracted for their use as
independent measures in second level prediction analyses (see
below). These included two categorical contrasts, (Stop � Go)
[i.e. (SS + SE) / 2 � Go] and (SE � SS), and the three computati
onal regressors: P(stop) [i.e. 0.5 � GoxPk(stop) + 0.25 � SSxPk

(stop), + 0.25 � SExPk(stop)], UPE, and SPE.

Three-year follow-up interview
session

OSU who completed the neuroimaging session were contacted
3 years after their initial lab visit to complete another standar-
dized interview (phone or in-person) examining extent of drug
use in the 3-year interim period (using the SSAGA II). Two
groups were identified: problem stimulant users (PSU) and de-
sisted stimulant users (DSU). PSU (n = 38) were a priori
defined by: (i) continued stimulant use since baseline interview;
and (ii) endorsement of 2 + symptoms of DSM-IV amphet-
amine and/or cocaine abuse and/or dependence criteria

occurring together 6 + contiguous months since the initial
visit [M = 4.2 symptoms; standard deviation (SD) = 2.3;
range: 2–9]. This classification is therefore more stringent
than a DSM-IV stimulant abuse diagnosis (requiring only
one symptom) and is consistent with the required criteria to
meet a DSM-5 substance use disorder (APA, 2013). All PSU
had at least one diagnosis of stimulant abuse or dependence,
including 43% meeting criteria for DSM-IV stimulant depend-
ence. In comparison, DSU (n = 50) endorsed: (i) no 6-month
periods with 1 + stimulant uses; and (ii) no symptoms of in-
terim stimulant abuse/dependence. Thus data from 88 subjects,
from the subset of 158 OSU previously published in Harlé
et al. (2014), were included in the present analyses. The re-
maining 69 OSU with follow-up data did not meet PSU or
DSU group criteria and therefore were not included in further
computations.

Clinical prediction analyses

Statistical approach

To allow for cross-validation of variables’ predictive accuracy,
we adopted a split-sample approach. We first identified poten-
tial predictive neural regions by conducting voxelwise logistic
regression analyses in a randomly selected ‘training’ subset of
our sample (n = 88/2 = 44; using random.org). The remaining
‘test’ subset was used to assess the relative predictive power
of these activation clusters identified based on the training
sample. This enabled us to obtain a more parsimonious
model and more conservative estimates of model coefficients
and accuracy measures. Both training and test samples
were stratified based on clinical status base rates to produce
equivalent proportions of PSU and DSU in each sample
(i.e. 50/2 = 25 randomly selected DSU and 38/2 = 19 randomly
selected PSU). For each final predictive regions identified by the
random forest selection, two sets of coefficients were obtained:
those extracted based on the test sample (used for final cut
points and accuracy estimation), and those based on the train-
ing sample (calculated as the average slope and intercept coef-
ficients across all voxels in the brain region).

Identification of predictive neural regions:

second-level functional MRI analyses with robust

logistic regression

To identify brain areas with task-related activations predicting
future clinical outcome, while minimizing the influence of out-
liers and risk of model overfitting, we conducted voxelwise
robust logistic regressions with 3-year follow-up status as the
dependent measure (coded 1 = PSU versus 0 = DSU). This ana-
lysis was restricted to the randomly selected training sample
(n = 88/2 = 44). For each voxel (j), the log odds of this out-
come for the ith subject is modelled as a linear combination of
the M predictor variables of interest with an equation of this
form:

logitðpiÞ ¼ loge
pi

1� pi

� �
¼ �j þ

XM
m¼1

bjmXijm

where pi is the probability of PSU status at 3-year follow-up
for the ith subject, �j and bjm are the intercept and coefficients
for the M model predictors, and Xijm represent the standar-
dized values for the M predictors of interest for the ith subject.
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These independent variables included activation (normalized
beta weight) associated with each of the five task regressors
extracted from the first level GLM [i.e. Go-Stop, SE-SS,
P(stop), UPE, and SPE] along with three baseline indices of
drug use (lifetime uses of amphetamine, cocaine, and mari-
juana). We did not include baseline indices of alcohol and
tobacco usage, as (i) no lifetime use measures were obtained
for these drugs; and (ii) groups had very similar baseline use
for both drugs (P4 0.8). This analysis was implemented by
fitting a robust generalized model equation using R statistics
[http://cran.r-project.org; robust library, glmrob()]. The
method uses a Mallows quasi-likelihood estimator and
Huber-type robust M-estimator of variance, allowing us to
bound the influence of outliers (Cantoni and Ronchetti, 2006).

To obtain the resulting whole-brain statistical maps and
identify significantly predictive brain regions, we corrected
for multiple comparisons using a cluster threshold adjustment
based on Monte Carlo simulations (AFNI’s AlphaSim), based
on whole-brain voxel size and 4 mm smoothness. A minimum
cluster volume of 448ml was used, with a cluster significance
of P = 0.01 corrected for multiple comparisons.

Cross-validation and variable selection: random

forest analysis

Using the ‘test’ sample, average %SC from baseline was ex-
tracted for each of the significant regions associated with each
task regressor of interest (i.e. regions of interest identified by
robust logistic regression in training sample). To obtain a more
selective predictive model, we included all these activations as
well as the three baseline lifetime drug use measures as inde-
pendent variables in a random forest analysis predicting 3-year
clinical outcome. Random forest analysis is a robust predictive
technique, outperforming other classification algorithms such
as the support vector machine (Qi et al., 2006). Specifically,
the combination of bagging and random feature selection in
random forests minimizes threats to variable selection resulting
from multicollinearity and relatively large numbers of pre-
dictors relative to sample size, both common issues in brain
imaging studies (Bureau et al., 2005).

The random forest procedure involves three main steps
(Breiman, 2001; Strobl et al., 2009). The first step is to con-
struct a large number of classification trees (e.g. 2000). Each
tree is based on a bootstrapped subsample of participants and
a randomly selected subset of independent variables. For each
tree, the random forest algorithm determines the optimal split
point for each selected variable in order to correctly classify
participants into PSU or DSU. In a second step, each tree
classifies subjects that were not used in its original construction
(i.e. out-of-bag sample). Such individual tree ‘votes’ are aggre-
gated to provide the predicted status of each participant, and
thus determine overall accuracy measures (i.e. classification ac-
curacy, sensitivity, specificity, positive and negative likelihood
ratios). In a third and final step, data from the out-of-bag
sample are used to estimate variable importance and select
the most predictive variables (i.e. those with highest import-
ance scores). Such importance metric quantifies how much
each variable contributes to classification accuracy and is
defined as the decrease in overall accuracy when values of
that variable are randomly permuted (i.e. breaking the associ-
ation between predictor and outcome variable) (for more de-
tails, see Supplementary material and Strobl et al., 2009;
Genuer et al., 2010; Ball et al., 2014).

The final output of the random forest process is therefore a
cross-validated accuracy estimate (i.e. true positives + true
negatives), which we compared to the base response rate and
its confidence interval (CI) with a chi-square goodness of fit
test. In the test sample, the most accurate base response rate
(with no predictors in the model) was 25 / 44 = 57% (95% CI:
42–70%). In this study, we ran three random forest analyses
each with a distinct set of baseline variables to compare the
overall performance of (i) drug use measures; (ii) categorical
functional MRI regressors; and (iii) Bayesian/computational
functional MRI regressors, respectively.

Individual predictor accuracy

To further understand the relationship between task-based acti-
vation and future likelihood of stimulant abuse and/or depend-
ence in the most reliably predictive identified regions of interest
(i.e. identified with random forest analysis), we conducted boot-
strapped robust logistic regressions predicting 3-year clinical
outcome with each predictor individually (i.e. average region
of interest activation), implemented in R statistics (http://cran.
r-project.org; robust and boot libraries). As with the training
sample whole-brain analyses, this robust generalized model
equation used a Mallows quasi-likelihood estimator minimizing
the influence of outliers. For significance test, we provide the
change in likelihood ratio (relative to a baseline model), which
follows a chi-squared distribution. Cut points (in zero-meaned
standardized scores) corresponding to a 50% probability of PSU
versus DSU classification and 10-fold cross-validated test accur-
acy were also estimated for these models.

Results

Participant characteristics and drug
use

Groups did not differ in ethnicity [PSU/DSU: 67%/64%

Caucasian, 16%/16% Asian-American, 8%/8% Hispanic,

0%/4% African-American, 8%/8% other; �2(4) = 1.54,

P = 0.82], gender [PSU: 56% female; DSU: 54% female;

�2(1) = 1.35, P = 0.71], age, education, or verbal IQ

(P40.05; see Table 1). In addition, they did not differ in

alcohol and cigarette use, attention deficit hyperactivity dis-

order or conduct disorder symptoms (assessed with the

SSAGA-II). Although groups did not differ in baseline cocaine

and marijuana use, PSU reported a higher cumulative number

of amphetamine uses at baseline (P = 0.03). Consistent with

their diagnoses, PSU reported significantly higher interim use

of cocaine and amphetamine (P5 0.001; see Table 1), how-

ever groups did not differ in interim marijuana use. Thus,

generally, PSU and DSU did not differ in terms of their demo-

graphic and psychological profile at baseline.

Behavioural performance

Reaction times and model-based behavioural

adjustment

Consistent with our model’s assumptions (Shenoy and Yu,

2011; Shenoy et al., 2011; Ide et al., 2013), a positive
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linear relationship between Go reaction time and P(stop)

was observed in all participants [B = 272 ms, t(84) = 4.9,

P50.05, model omnibus test: �2(1) = 21.8, P5 0.001;

mean Pearson correlation coefficient: r = 0.13]. While PSU

demonstrated a tendency for faster Go reaction time rela-

tive to DSU, the group main effect on Go reaction time was

not statistically significant [�2(1) = 1.3, P = 0.25; mean re-

action time: PSU = 578 ms; DSU = 634 ms; see Fig. 2B for

Go reaction time distributions]. We note that DSU and PSU

also did not differ in their mean reaction times during the

pre-scanning stop-signal task [PSU: mean reaction

time = 617 ms; DSU: mean reaction time = 606 ms;

t(86) = 0.3, P = 0.75]. The Group � P(stop) interaction

was marginally significant [�2(2) = 4.8, P = 0.09], showing

a trend for smaller positive slope of reaction time slowing

as a function of P(stop) in DSU who also had a wider Go

reaction time range. A strong linear relationship between

Go reaction time and P(stop) in both groups [PSU: B = 385,

t(35) = 12.0, P5 0.001; �2(1) = 110.4, P5 0.001; DSU:

B = 187, t(48) = 6.2, P5 0.001; �2(1) = 39.1, P5 0.001].

For illustration of the linear trends, Fig. 2D shows data

collapsed across all subjects for PSU and DSU separately,

where Go trials were binned by P(stop) and average reac-

tion time calculated for each bin separately.

Finally PSU and DSU did not differ in Stop Signal

Reaction Time [SSRT; mean PSU = 251 ms; mean

DSU = 165 ms, t(86) = 1.4, P = 0.16; see Supplementary ma-

terial for SSRT computation] or post-stop slowing [i.e.

reaction time difference on trials following Go versus

Stop trials; t(86) = 1.2, P = 0.24].

Performance accuracy

As expected, participants had a higher likelihood of error

on trials with longer SSD [�2(5) = 2161, P5 0.0001].

However, PSU and DSU did not differ in their average

stop error rates [Group main effect: �2(1) = 1.9, P = 0.17;

mean error rates: PSU = 0.47; DSU = 0.41] and no signifi-

cant group by SSD interaction was observed [�2(5) = 5.31,

P = 0.38; Fig. 2C]. Moreover, as predicted by our ideal

observer model (Shenoy and Yu, 2011; Shenoy et al.,

2011; Ide et al., 2013) and the observed reaction time ad-

justment, we found a negative relationship between error

likelihood and P(stop), with higher P(stop) prompting a

smaller likelihood of error [odds ratio = 0.23, Wald

z = �2.34, P50.05; omnibus test: �2(1) = 5.37,

P5 0.05]. Neither main effect of group [�2(1) = 1.3,

P = 0.24] nor Group � P(stop) interaction [�2(2) = 2.02,

P = 0.37] reached statistical significance, suggesting PSU

and DSU similarly utilized higher expectancy of a encoun-

tering a stop trial to slow down and minimize commission

errors.

Overall, results are consistent with our previous work

(Ide et al., 2013; Harlé et al., 2014) and suggest that

both PSU and DSU maintain and update an internal esti-

mate of stop trial probability, which they use to anticipate

and modulate their inhibitory control performance with

Table 1 Participants’ baseline characteristics as a function of 3-year follow-up clinical outcome.

PSU n = 38 DSU n = 50

Mean SD Mean SD t-test

Demographics

Age 20.7 1.6 21.0 10.3 P = 0.41(0.83)

Education 14.6 1.4 14.9 10.2 P = 0.33(0.98)

Verbal IQ (WTAR) 109.8 6.1 108.6 80.6 P = 0.47(0.71)

Alcohol (typical drinks/week) 18.6 13.7 18.2 130.8 P = 0.91(0.11)

Nicotine (typical cigarettes/day) 2.3 3.7 2.9 40.5 P = 0.87(0.15)a

Attention/hyperactivity (from SSAGA II)

ADHD attention Symptoms 1.4 2.5 0.5 00.99 P = 0.26(10.13)a

ADHD hyperactivity Symptoms 1.2 2.2 0.7 10.4 P = 0.56(0.59)a

Conduct symptoms 1.5 1.7 1.6 10.5 P = 0.86(0.17)

Personality/mood

BIS 66.8 9.6 64.5 9.0 P = 0.24(10.18)

SSS 25.0 4.9 24.7 4.7 P = 0.73(0.35)

BDI 1.7 1.7 3.4 3.9 P = 0.37(0.89)a

Lifetime drug uses (baseline)

Cocaine 26.2 40.6 22.3 46.2 P = 0.27(10.10)a

Prescription Stimulants 29.1 38.7 24.7 78.0 P = 0.03(20.22)a

Cannabis 784.9 1094.6 811.4 1158.1 P = 0.52(0.64)a

Interim drug uses (baseline � follow-up)

Cocaine 279.0 605.9 5.8 18.7 P_ 0.001(50.06)a

Prescription stimulants 60.6 86.6 6.5 28.2 P_ 0.001(70.20)a

Marijuana 580.9 924.7 762.9 1520.0 P = 0.54(00.62)a

Q = intelligence quotient; WTAR = Wechsler Test of Adult Reading; N/A = not applicable; BIS = Baratt Impulsiveness Scale; SSS = Sensation Seeking Scale; BDI = Beck Depression

Inventory.
at-test computed using natural log transformed + 0.01 values (due to non-normal distributions) replicated results for raw data. Bold indicates statistically significant values.
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systematic consequences on Go reaction time and stop

error rate. That is, by slowing down as the expectation

of a stop trial increases, individuals can minimize the risk

of a stop error (Shenoy and Yu, 2011).

Predictive analyses

After correction for multiple comparisons, whole-brain

robust logistic regression analyses in the training sample

identified a total 38 regions of interest in which task-

based activation (at baseline) predicted 3-year follow-up

status. These included 17 clusters associated with categor-

ical non-Bayesian model inferred contrasts (eight for Stop-

Go, nine for SE-SS) and 21 clusters associated with

Bayesian computational contrasts of interest [three for

P(stop), six for UPE, and 12 for SPE]. The predictive

power of these regions of interest, as well as baseline

drug use measures, was cross-validated in the test sample

using random forest analyses.

Drug use model

The full model included baseline lifetime uses of cocaine,

amphetamine, and marijuana (as reported in Table 1), as

predictors of 3-year follow-up clinical status (PSU versus

DSU). No variable met criteria for inclusion in the final

model. The full model yielded an overall accuracy of

52%, which is not statistically significantly different from

the no-predictor model based on response rate alone.

Sensitivity was 48%, and specificity was 56%. The positive

likelihood ratio of 1.08 (95% CI: 0.56, 2.08) and the nega-

tive likelihood ratio of 0.94 (95% CI: 0.54, 1.63) were not

statistically different from each other and statistically dif-

ferent from 1.0 (P40.05; see Table 2).

Categorical neural predictors model

Predictors in the full model included activations extracted

from 17 regions of interest identified with robust logistic

regressions. One variable met criteria for inclusion in the

final model: (SE-SS) activation in rostral ACC [Brodmann

area (BA) 25; Centre of Gravity Talairach Coordinates

(CoGTC): 2,19,�4]. However, the final model yielded an

overall accuracy of 64%, which is not statistically signifi-

cantly different from the no-predictor model based on re-

sponse rate alone. Sensitivity and specificity for this final

model were 59% and 67%, respectively. The positive like-

lihood ratio of 1.76 (95% CI: 0.88, 3.52) and the negative

likelihood ratio of 0.62 (95% CI: 0.33, 1.17) were

statistically different from each other (P5 0.05), but not

statistically different from 1.0 (P4 0.05; see Table 2).

Bayesian computational neural predictors model

Predictors in the full model included activations extracted

from 21 regions of interest identified with robust logistic

regressions, including three regions of interest for trial

type-independent P(stop) activation, six regions of interest

associated with Bayesian UPE [UPE: outcome � P(stop)]

activation, and 12 regions of interest associated with SPE

[SPE: |outcome � P(stop)|] activation. Four variables met

criteria for inclusion in the final model: UPE activation in

right thalamus (CoGTC: 2,�11,2), as well as SPE activa-

tion in right anterior insula/inferior frontal gyrus (IFG;

CoGTC: 28,16,�10), in a cluster overlapping right superior

medial prefrontal cortex (PFC) (BA9) and dorsal ACC

(BA32; CoGTC: 19,37,22), and in right caudate (BA25;

CoGTC:1,7,1). The final model yielded an overall accuracy

of 74%, which represents a statistically significant improve-

ment in accuracy from the model based on response rate

alone. Sensitivity and specificity for this final model were

62% and 83%, respectively. The positive likelihood ratio

of 3.51 (95% CI: 1.34, 9.21) and the negative likelihood

ratio of 0.47 (95% CI: 0.26, 0.87) were statistically differ-

ent from each other and from 1.0, P50.05 (Table 2 and

Supplementary Fig. 1). A random forest analysis on a ‘com-

bined’ model including all drug use, neural categorical, and

neural computational predictors produced the same set of

five variables meeting criteria for inclusion in the final

model (i.e. SS-SE activation in rostral ACC, UPE activation

in thalamus and SPE activations in medial PFC/ACC, an-

terior insula, and caudate). This final model yielded an

overall accuracy of 76% (sensitivity: 67%; specificity:

83%), which was significantly different from base response

rate model (P50.05) but did not differ from the compu-

tational predictor model based on McNemar’s chi-squared

test [�2(1) = 2.0, P = 0.96]. In addition, the computational

predictor model accuracy was significantly different from

the drug use model [�2(1) = 8.1, P5 0.01] and only at a

trend level from the categorical predictor model

[�2(1) = 3.2, P = 0.07].

Among these four regions of interest, SPE activation in

medial PFC/ACC had the strongest individual contribution

to model accuracy (i.e. importance score = 6.8%), followed

by SPE activations in caudate (importance score = 5.8%)

and anterior insula/IFG (importance score = 5.7%), and

Table 2 Test characteristics of cross-validated predictive models

Model Accuracy (%) Sensitivity (%) Specificity (%) Positive LR (95% CI) Negative LR (95% CI)

Drug usea 52 48 56 1.08 (0.56, 2.08) 0.94 (0.54, 1.63)

Neural – SST categorical 64 59 67 1.76 (0.88, 3.52) 0.62 (0.33, 1.17)

Neural – SST computational 74* 62 83 3.51 (1.34, 9.21) 0.47 (0.26, 0.87)

aNo variable was retained for inclusion in a final predictive model, thus full model accuracy are reported.

*Statistically significant difference from response rate-based accuracy 57% (95% CI: 42–70%).

SST = stop signal task; LR = likelihood ratio.
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UPE activation in right thalamus (importance score =

3.7%).

Predictor accuracy and cut points

Table 3 includes bootstrapped robust logistic regression co-

efficients and associated statistics for each cross-validated

statistically significant predictor identified by the random

forest (i.e. computational model). Coefficients were plotted

as logistic functions along with accuracy measures and the

estimated 0.50 probability cut point typically used for lo-

gistic regression models. Finally, to ease interpretation,

group mean activations by group (DSU versus PSU) are

also presented for these brain regions.

For all four computational predictors, larger neural re-

sponses negatively correlated with Bayesian prediction

errors were associated with a higher likelihood to be cate-

gorized in the PSU group 3 years later. Specifically, for

every standardized unit increase in UPE deactivation in

right thalamus, one was about three times as likely to de-

velop a future stimulant use disorder [odds ratio = 3.45;

�2(1) = 5.5, P5 0.05] (Table 3 and Fig. 3A and B). As

shown in Fig. 3C, while average activation associated

with a negative UPE was significantly different from zero

in PSU, such activation was close to zero in DSU. Similarly,

an individual was two to three times as likely to be cate-

gorized in the PSU group for every standardized unit in-

crease in SPE deactivation in medial PFC/ACC [odds

ratio = 2.44; �2(1) = 5.8, P50.05] (Table 3 and Fig. 4B),

anterior insula/IFG [odds ratio = 3.19; �2(1) = 6.2,

P50.05] (Table 3 and Fig. 4A), and caudate [odds

ratio = 3.02; �2(1) = 5.5, P5 0.05] (Table 3 and Fig. 4C).

As can be seen in Fig. 4D, activations associated with a

negative SPE in these regions was significantly different

from zero in PSU (P50.02), but not significantly different

from zero in DSU (P4 0.05). The standardized cut points

associated with a 50% probability of being classified as

PSU versus DSU ranged from z = 0.17 to 0.36 (Table 3

and Figs 3 and 4). The respective receiver operating char-

acteristic (ROC) curves associated with these individual

models are presented in Fig. 5.

Discussion
In this study we aimed to determine whether the combin-

ation of functional neuroimaging and computational

approaches to behaviour are able to generate predictions

that can help determine whether an individual will progress

to problem use. We used a Bayesian ideal observer model

to infer probabilistic expectations of inhibitory response in

a stop-signal task among OSU collected at baseline. Cross-

validated robust regression and random forest analyses

showed that neural responses associated with Bayesian

model-inferred prediction errors (representing the trial-

wise discrepancy between expectation of a stop trial and

actual trial outcome) in right ACC, anterior insula, caud-

ate, and thalamus most robustly predicted 3-year clinical

status (i.e. meeting criteria for stimulant use disorder versus

desisted use status). These computational neural variables

significantly contributed predictive validity above the base

rate, which was not the case for other baseline predictors a

priori thought to be promising, such as reported lifetime

drug use or non-model based neural predictors. To our

knowledge, this is the first study to apply a Bayesian cog-

nitive model to event-related neural activity to predict long-

term clinical outcome.

Greater correlation of neural activity with Bayesian

model-inferred prediction errors was predictive of clinical

outcome in four brain regions, including the anterior

insula/IFG, medial PFC/ACC, caudate, and thalamus.

Based on the evidence that PSU and DSU had similar

trial-by-trial variability in reaction time and stop error

rate relative to the Bayesian model-based P(stop) measures,

different correlation coefficients associated with Bayesian

prediction errors in these brain regions are unlikely to re-

flect differential adequacy of model fit between the two

groups, but instead reflect differences in the underlying

neural representation of processing strategies. Based on

our results, it appears that those OSU who are more

likely to develop stimulant abuse may already experience

during their experimentation phase a stronger discrepancy

between their internal model of what to expect and the

actual outcomes.

The set of predictive regions identified in this study is

congruent with this interpretation. Indeed, expectancy vio-

lation and prediction error signals have been consistently

observed in the medial PFC, especially ACC (Somerville

et al., 2006; Aarts and Roelofs, 2011; Kennerley et al.,

2011), and insula (Murray et al., 2007; Preuschoff et al.,

2008; d’Acremont et al., 2009; Bossaerts, 2010).

Importantly, recent computational work has linked

Table 3 Bootstrapped robust regression coefficient estimates for predictive regions of interest

Predictors B SE P-value exp(B) 95% CI for exp(B) Cut point*

Right thalamus (UPE) 1.24 0.35 0.001 3.45 1.74–6.86 0.26

Right medial PFC/ACC (SPE) 0.89 0.41 0.029 2.44 1.09–5.44 0.36

Right anterior insula (SPE) 1.16 0.45 0.009 3.19 1.32–7.71 0.17

Right caudate (SPE) 1.10 0.41 0.007 3.02 1.35–6.74 0.29

*z score; all predictors represent deactivations proportional to Bayesian prediction errors; UPE = unsigned prediction error [i.e. |outcome � P(stop)|]; SPE = signed prediction error

[i.e. outcome � P(stop)].
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activation of both dorsal ACC (Behrens et al., 2007;

Rushworth and Behrens, 2008) and anterior insula

(Preuschoff et al., 2008; Singer et al., 2009; Bossaerts,

2010) to the coding of surprise and uncertainty in the en-

vironment (i.e. volatility). In addition, while ventral stri-

atum (including ventral caudate as found here) has most

often been implicated in reward learning, this region ap-

pears to encode prediction errors in a variety of learning

paradigms (Menon et al., 2007; Delgado et al., 2008), and

prediction error signals have also been observed in the thal-

amus (Ploghaus et al., 2000; Kim et al., 2006). Overall, our

results suggest that a greater neural response proportional

to prediction errors associated with the anticipated need to

stop is associated with a higher likelihood of developing

stimulant abuse or dependence 3 years later.

The hypothesis that PSU have exaggerated prediction

error response and thus experience greater expectancy vio-

lation is also consistent with research suggesting neural al-

terations specific to trend detection and prediction in

stimulant users (Aron and Paulus, 2007). These neural

inefficiencies are linked to difficulties adapting to task-

specific contexts and a tendency towards more stereotyped,

automatic behaviour (e.g. more impulsivity and false

alarms in inhibitory tasks) (Verdejo-Garcia et al., 2005;

Aron and Paulus, 2007). In fact, it has been argued that

persistent residual prediction errors and failure to learn

may underlie the repetitive cycle of urges and maladaptive

behavioural responses typically observed in addicts (Redish,

2004). Interestingly, most of our clinically predictive com-

putational variables involved activation to signed prediction

errors (observed in ACC, anterior insula, and caudate).

Indeed because these signals include information on the

direction of expectancy deviation, they may be particularly

relevant to the selection of specific actions in the task (e.g.

Go versus Stop). Thus, it is tempting to speculate that PSU

may have difficulty updating stimulus-response contingen-

cies to flexibly modulate their behaviour because of the

neural processing deficits of prediction errors. As a conse-

quence, these individuals may engage in a more rigid be-

havioural pattern that has also been observed in stimulant

Figure 3 Region of interest in which activation associated with a Bayesian UPE predicts 3-year clinical status (PSU versus

DSU). (A) Activation in the right thalamus associated with a Bayesian UPE predicts 3-year clinical status (PSU versus DSU); (B) logistic regression

curves representing long-term probability of developing stimulant abuse (PSU status) as a function of (standardized) UPE deactivation in the right

thalamus; robust coefficients estimated in training (red) and test sample (green); 50–50% probability cut point and 10-fold cross-validated accuracy

measures were estimated based on the test sample (green). (C) Average per cent signal change per standardized unit increase in UPE deactivation

for each follow-up group (DSU: n = 50; PSU: n = 38; error bars = SEM).
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abusers. In support of this hypothesis, a recent study found

that OSU, relative to healthy controls, exhibited persistent

activation in the insula and striatum during a prediction

task even after contingencies had been established

(Stewart et al., 2013). Our previous finding that relative

to healthy controls, OSU had weaker neural encoding of

P(stop) and associated prediction errors may seem at odds

with the present results. However, we note that such

weaker signals were observed in different neural areas

and were primarily associated with P(stop) and UPE encod-

ing instead of SPE as found here. It is therefore not incom-

patible if OSU are less efficient in tracking the probability

of stop trials [P(stop)] and its updating (UPE), that they

should also experience greater discrepancy between their

action expectations and actual signal, particularly at a

lower level of processing (i.e. action preparedness). Thus,

the altered ability to monitor and update the relationship

between internal and external stimuli, and available re-

sponses, could prompt greater discrepancy between ex-

pected and actual events in individuals at high risk for

developing stimulant abuse.

While we did not find evidence of significant task-related

behavioural impairment in PSU relative to DSU at baseline,

it is not necessarily incompatible with the presence of subtle

deficits in the cognitive processes supporting action predic-

tion at that time. At baseline, our sample of OSU was

relatively high-functioning (i.e. attending school in a com-

petitive university setting). It is likely that other compensa-

tory cognitive mechanisms could have been implemented in

those individuals. For instance, less efficient internal track-

ing of these stop response predictions (i.e. a more proactive

type of cognitive control) may have been compensated by

faster processing speed (including processing of auditory

stop signals) and motor response (i.e. reactive cognitive

Figure 4 Regions of interest in which activation associated with a Bayesian SPE predicts 3-year clinical status (PSU versus

DSU). Logistic regression curves representing long-term probability of developing stimulant abuse (PSU status) as a function of (standardized)

SPE deactivation in the right anterior insula/inferior frontal gyrus (IFG) (A), the right medial prefrontal cortex (mPFC)/ACC) (B), and the right

caudate (C); robust coefficients estimated in training (red) and test sample (green); 50–50% probability cut point and 10-fold cross-validated

accuracy measures were estimated based on the test sample (green curves). (D) Average per cent signal change per standardized unit increase in

SPE deactivation for each follow-up group (DSU: n = 50; PSU: n = 38; error bars = SEM). PSU had significantly greater SPE deactivations in the

right medial PFC/ACC, t(41) = 2.1, P = 0.04, the right anterior insula, t(41) = 3.5, P = 0.001, and the caudate, t(41) = 3.0, P = 0.004. Moreover

these deactivations were significantly different from 0 in PSU [medial PFC/ACC: t(18) = 2.6, P = 0.02; anterior insula: t(18) = 3.0, P = 0.008;

caudate: t(18) = 3.1, P = 0.006], but not different from 0 in DSU [medial PFC/ACC: t(24) = 0.77, P = 0.45; anterior insula: t(24) = 1.6, P = 0.12;

caudate: t(24) = 1.3, P = 0.20].
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control) (Aron, 2011; Braver, 2012). Such dissociation has

been recently supported by evidence of flexible adjustments

in cue-based recruitment of fronto-lateral regions (Braver

et al., 2009). The present work suggests that a Bayesian

modelling framework may be particularly useful in subclin-

ical populations to discern more subtle levels of impairment

not being captured by behavioural measures or coarser

statistical modelling. We note, however, that the probabil-

ity of encountering a stop trial in this experiment was fixed

and independent of recent trial history, which limits our

ability to test the predictive power of more complex

belief updating mechanisms, such as the presence of statis-

tical dependency and variability of the stop signal probabil-

ity in the environment. Moreover, a limitation of this study

is that, despite adequate group-level fit between behaviour

(e.g. reaction times) and model inferred expectations [i.e.

P(stop)], there was some variability in the degree of indi-

vidual model fit, overall producing a relatively weak effect

size (r = 0.13). This may be due in part to the fact that the

DBM parameters were fitted based on a larger baseline

sample of OSU (Harlé et al., 2014) and to the modest

number of trials limiting the model in its ability to consider

other systematic or random sources of reaction time vari-

ability. Future research applying this Bayesian model to

more dynamically complex stop-signal designs (e.g. in

which the underlying stimulus or trial outcome is probabil-

istically predictable, and/or wider range of stop-signal

delay/difficulty) may be particularly valuable to investigate

neural predictors of inhibitory behavioural dysfunction in

substance abusers.

Conclusion
We showed that among young adults experimenting with

stimulants, larger encoding of Bayesian prediction errors

associated with inhibitory function in the insula, medial

PFC/ACC, caudate, and thalamus predicts development of

stimulant abuse versus abstinence 3 years later. Results are

consistent with the notion that OSU vulnerable to developing

a stimulant use disorder are less efficient in neurally repre-

senting when to ‘stop’ or ‘go’. Naturally, while our analytical

approach is strengthened by the use of robust model fitting

and bootstrapping (e.g. with random forest), replication of

these results in other samples and environments is needed to

demonstrate test–retest reliability. If robust to replication,

these computational biomarkers may provide new avenues

in the prevention of stimulant addiction.
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