By Eli S. Goldensohn, Alan D. Legatt, Samuel Koszer and Steven M. Wolf.

This volume, with its marvellously didactic subtitle, is not really a book but an atlas with 355 out of 382 pages devoted to high quality reproductions of actual EEGs. Indeed, apart from a brief introductory chapter on technical methodology and the clinical and descriptive annotation of each record, there is no unifying textual thread to guide the reader to the golden mean of interpretation. This is a pity, especially as the volume originates from material comprising a course sponsored by the American Academy of Neurology.

Format, scale and quality of reproduction are of paramount importance in an atlas, and here this volume excels. Each 28 × 39.5 cm ‘portrait’ oriented page contains 10 s of EEG displayed at a paper speed of 23 mm/s, slightly slower than the conventional 30 mm/s, with orange vertical lines at 1 s intervals allowing easy textual reference. The majority of illustrations are 21-channel pen written traces at conventional gains of 100 µV/cm. Montages are clearly annotated both diagramatically and by the 10–20 electrode co-ordinates of each channel. Curiously, there is no mention of amplifier filter settings. A brief footnote details the clinical circumstances and the EEG features of interest, often with three or four key literature references. In order to ensure that its many tall pages lie flat when opened the volume has a wire spiral binding. This will not endear it to librarians, and seasoned electro-encephalographers must resist the temptation to flick the very lifelike pages.

As is customary in America, many of the recordings are displayed using a common average, earlobe or vertex reference derivation as opposed to the bipolar method favoured by many European laboratories. However, often the same phenomena are displayed in several different derivations, a bonus to the student familiar with only one method.

The organization of topics is unusual and encourages the reader to take a critical approach; for example, Chapter 4 is entitled ‘Normal activity that resembles abnormal activity’, whilst Chapter 5 deals with ‘Abnormal activity which resembles or interacts with normal activity.’ Any EEG volume attempting to draw a fine line between normality and abnormality will court criticism, but I suspect that many electroencephalographers would take issue with the categorization of non-generalized photoparoxysmal responses as abnormal. There is no mention of the large studies of photosensitivity in normal aircrew, or of Doose’s classification.

The main hurdles facing the novice are recognizing artefact, which is dealt with admirably, and appreciating the wide limits of the normal at different ages and stages of wakefulness, and here the volume would have benefited from a more systematic approach to the maturation of the normal EEG. Indeed, paediatric EEG, which forms a large proportion of many departments’ workload, is underrepresented and the most difficult area of all, premature and neonatal records, receives no mention.

Because of the enormous advantages of digital machines which can recalculate and display the same page of EEG with different references, montages, filters and ‘paper speeds’, it is now virtually impossible to acquire a new conventional paper writing EEG machine. Although it is doubtful that paperless media will ever fill the shelves of our libraries this is, as previously stated, not a book, but an atlas and the educational possibilities of presenting such data in a manipulable multimedia digital form are obvious. As we approach the end of an era in EEG, this volume, very possibly the last of its kind, is truly an anachronism but one which many who are currently new to the art of interpretation will find of value.

Jerry Heath
Department of Neurophysiology,
University Hospital of Wales,
Cardiff