OCCASIONAL PAPER

Professor P. K. Thomas: clinician, investigator, editor and leader—a retrospective appreciation

Arthur K. Asbury,¹ Rosalind H. M. King,² Mary M. Reilly,³ Peter J. Dyck,⁴ Gerard Said⁵ and Alastair Compston⁶

1 Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
2 Department of Clinical Neurosciences, Institute of Neurology, University College London, Royal Free Campus, London, UK
3 MRC Centre for Neuromuscular Diseases, Department of Molecular Neurosciences, UCL Institute of Neurology, London, UK
4 Department of Neurology, Mayo Clinic, Rochester, MN, USA
5 Department de Neurologie, Hopital de la Salpetriere, Paris, France
6 Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK

Correspondence to: Arthur K. Asbury, MD, FRCP, Van Meter Emeritus Professor, Department of Neurology, University of Pennsylvania School of Medicine, 3 Dulles, 3400 Spruce Street, Philadelphia, PA 19104, USA
E-mail: asbury@mail.med.upenn.edu

P. K. Thomas (1926–2008) occupied a prominent place in British and world neurology during the second half of the 20th century. Here, his lasting achievements as clinical neurologist, clinician scientist and experimentalist, editor of monographs and journals and leader of professional developments in the UK and elsewhere are assessed.

Keywords: Professor P. K. Thomas; Editor, Brain, 1982–1991; Neurological Clinician and Teacher; Investigator; Leader in Neurology

Introduction

Professor Peter Kynaston Thomas CBE, DSc, MD, FRCP, FRCPath died on 25 January 2008 at the age of 81. P.K., as he was known to all, came to University College, London in 1944, 63 years earlier, from his native Wales. He was affiliated with the University of London in one way or another for the rest of his life, save for 1 year in Canada (as Assistant Professor of Neurology, McGill University, Montreal, Canada; 1961–62). Early in his long career, P.K. became firstly an excellent physician, and then a consummate neurological clinician with special knowledge of, and interest in, peripheral neuropathies. He was also a skilled electrodiagnostician of nerve and muscle, an expert morphologist—including electron microscopy—of peripheral nerve, and also a pioneer (along with his second wife, Anita Harding) of the genetics of inherited neuropathies. Furthermore, P.K. built an excellent neurology teaching programme both for medical students and for trainees at the Royal Free Hospital School of Medicine in London. From 1974, P.K. served unstintingly in his professorial and consultant roles both at the Royal Free and The National Hospital, Queen Square until the date of his formal, and mandatory, retirement in 1991. Thereafter, he remained active and fully engaged in his many roles—consultant, teacher, investigator and editor—for another decade until he was felled by a major non-dominant hemisphere stroke in 2001. The fruits of his 55 years of academic and investigational activity are recorded in more than 300 refereed journal articles, 75 review articles, >100 book chapters, and the 14 monographs that bear his name. His bibliography is appended and

Received May 7, 2010. Revised June 16, 2010. Accepted June 20, 2010
© The Author (2011). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
available online as Supplementary Data. P.K. excelled as an editor; this included maximum terms as Editor of Brain (1982–91), Chief Editor of the Journal of Anatomy (1990–2001), and Co-Chief Editor of the Journal of Neurology with Professor Marco Mumenthaler (1979–81). P.K.’s leadership is further reflected by his term as President of the Association of British Neurologists, as Co-Founder and First President of the European Neurological Society, and as the Chair of the Research Group on Neuromuscular Diseases Section of the World Federation of Neurology. This review summarizes and reflects upon the professional achievements of Professor P. K. Thomas. The authors were assembled in order to provide detailed knowledge and first-hand expertise; Dr Asbury was a friend and colleague of Professor P. K. Thomas for more than four decades. Alastair Compston, Editor of Brain, first approached Dr Asbury about writing a summary and commentary on the professional career of P.K. Dr Asbury agreed, but after investigation and considerable thought, concluded that no one colleague knew the full measure of P.K.’s accomplishments and interests; however, there were several—actually many—close colleagues of P.K., each of whom had special insight into particular aspects of his professional career. Dr Asbury approached Rosalind King (née Ballin), Peter J. Dyck, Mary Reilly, Gerard Said and Alastair Compston to join him as co-authors, on the basis that each had deep knowledge professionally of P.K. and his contributions to individual areas of expertise, institutions and enterprises to which both he and they individually were linked. Each has provided remarkable insight into the many areas of professional accomplishment for which P. K. Thomas is known.

P. K. as an investigator

P.K.’s career as an investigator started early. His interest in the structure of peripheral nerves was triggered in his undergraduate days when J. Z. (John) Young encouraged him to study the lateral line nerve of the trout. They observed that the internodal lengths in lateral line nerve fibres increase in concert with growth of the fishes (Thomas and Young, 1949). This early paper was a significant advance in understanding the process of peripheral nerve growth during development and later led to a functional investigation that related nerve fibre diameter and internodal length to conduction velocity (Cragg and Thomas, 1957). With Roger Gilliatt, P.K. found that conduction velocity is extremely slow in peroneal muscular atrophy (Gilliatt and Thomas, 1957). He agreed with others that type 1 is genetically heterogeneous (Thomas and Calne, 1974) and suggested that the term peroneal muscular atrophy be restricted to the axonal form, and that type 1 should be called hereditary demyelinating neuropathy (Thomas and Calne, 1971).

Focal nerve lesions were another early interest, particularly the carpal tunnel syndrome and ulnar nerve lesions at the elbow (Ebeling et al., 1959; Gilliatt and Thomas, 1960; Thomas, 1960; Cragg and Thomas, 1961). This led to combined morphological and electrophysiological studies of experimental Wallerian degeneration showing that conduction speeds are reduced in regenerated nerves (Aitken and Thomas, 1962; Cragg and Thomas, 1964a). At this time (the early 1960s) electron microscopy was just becoming useful as a tool for studying the fine structural details of anatomy. P.K. initially used electron microscopy to elucidate the details of the connective tissue in the nerve trunk of normal and regenerating nerves, and then the fine structural details of Schwann cells and the structural changes taking place in the first few hours after nerve injury (Thomas, 1963, 1964a, b). He extended the use of electron microscopy to detail the structure and development of the perineurium and its reaction to injury (Thomas, 1964b). P.K.’s lifelong interest in the pathology of diabetic neuropathy started early, first with his use of light microscopy (Thomas and Lascelles, 1965, 1966; Thomas, 1967), then electron microscopy of human nerves, and later experimental models, mainly through his use of rats with streptozotocin-induced diabetes (Sharma et al., 1977, 1981; Jefferys et al., 1978; Thomas et al., 1981).

Another lifelong interest, demyelinating disorders of peripheral nerve, also started around 1964 with nerve conduction studies of experimental allergic neuritis (Cragg and Thomas, 1964b). This was followed by light and electron microscopy studies that showed convincingly the process of demyelination and remyelination (Ballin and Thomas, 1969a,b). Many details about basic peripheral nerve structure that are now taken for granted were observed and reported in these early studies.

P.K. was a keen advocate of the use of nerve biopsies in the diagnosis of peripheral neuropathy and took nerves from a wide range of conditions (Thomas, 1970a, 1971). In time, he accumulated a large archive of specimens that, in aggregate, contributed enormously to understanding the pathological basis of neuropathic disorders covering everything from amyloidosis with neuropathy (Thomas and King, 1974) to xanthomatous neuropathy (Thomas and Walker, 1965). As in the earlier work, P.K. correlated the pathological changes that he and co-workers observed with electrophysiological and clinical studies. As his reputation developed, growing numbers of patients and biopsies were sent to him for diagnosis from many parts of the world.

Continuing research projects on degeneration of myelinated and unmyelinated axons systematically advanced understanding of the basic mechanisms (Thomas, 1969, 1971, 1973; King and Thomas, 1971). P.K. realized early on that Schwann cells and axons react as a unit, specifically that a disease affecting axons can also affect Schwann cells and vice versa. Other research projects focused on development of nerves in utero and degenerative changes in old age (Thomas et al., 1980; King and Thomas, 1982; Shield et al., 1986). He always favoured quantification of pathological changes rather than reliance on subjective description. As such, many of his research projects and human biopsy studies involved morphometric techniques (Thomas, 1970b; Shield et al., 1986; Bradley et al., 1990; Llewellyn et al., 1990). An interest in subacute myelo-optic neuropathy associated with cloxiquinol toxicity led to wider exploration of dying back neuropathy as related to central and peripheral processes of dorsal root ganglion neurons (Baumgartner et al., 1979; Thomas, 1982; Thomas et al., 1984a,b).

P.K. was always looking for new techniques and new ideas to apply to nerve structure and function, including forays into tissue culture (Gu et al., 1995; Luo et al., 2002) and freeze-fracture
techniques (Stolinski et al., 1981; Gabriel et al., 1986a, b). The last clinical study in which P.K. was actively involved meant climbing 15 000 feet up the Andes to remote regions of Peru to perform nerve biopsies and conduction studies for a study of altitude neuropathy (Appenzeller et al., 2002).

P.K. made particular contributions to the understanding of inherited neuropathies. These spanned the whole spectrum of inherited neuropathies from the relatively common Charcot–Marie–Tooth disease to the much rarer complex inherited metabolic neuropathies. His research in this area spanned five decades, encompassing phenotypic descriptions and detailed neurophysiological and pathological studies in the earlier years, and linkage studies, identification of mutations and finally the use of transgenic mice in the later years.

It is noteworthy that his earliest publication in 1947, 3 years before he graduated from medical school, was entitled ‘The Ancestry of Man’ clearly predicting one of his future interests, namely genetics (Thomas, 1947). Building on his earlier work throughout the 1950s, 1960s and 1970s, P.K. continued to publish on the phenotypes associated with a variety of inherited neuropathies including Charcot–Marie–Tooth disease [called hereditary motor and sensory neuropathy (HMSN)] (Lascelles et al., 1970; Thomas et al., 1972, 1974), Fabry’s disease (Kocen and Thomas, 1970), Tangier disease (Kocen et al., 1973) and also developed an interest in the genetic factors associated with amyloidosis (Thomas, 1975).

In the early 1980s, P.K. and his second wife, Anita Harding, were extensively involved in the careful phenotypic delineation of the different types of Charcot–Marie–Tooth disease that enabled accurate characterization and linkage studies to be done. Three of their seminal papers (Harding and Thomas, 1980a, b, c) are still widely cited. The next 20 years were a very exciting time in the field of inherited neuropathies as multiple causative genes were described. P.K. and Anita Harding, until her untimely death in 1995, continued at the forefront in this area, publishing important papers on the chromosome 17 duplication (Thomas et al., 1997) and deletion (Tyson et al., 1996), the hereditary demyelinating neuropathies of infancy (Tyson et al., 1997), PMP22 (Marques et al., 1998), and MPZ (Marques et al., 1999) point mutations and myotubularin-related 2 mutations (Houlden et al., 2001b). P.K. also expanded his interest in the hereditary sensory neuropathies and was involved in the description of NTRK1 as a cause of hereditary sensory and autonomic neuropathy type V (HSANV) (Houlden et al., 2001a) and subsequently a detailed phenotype study of HSAN 1 secondary to SPTLC1 mutations (Houlden et al., 2006).

During this period P.K. continued to actively pursue his interest in the inherited amyloidoses, especially familial amyloid polynuropathy due to transthyretin mutations. He published papers on the molecular genetics of amyloid neuropathy in Europe in 1989–90 (Holt et al., 1989; Harding et al., 1990) and was subsequently involved with a number of studies of transthyretin mutations in European patients (Bhatia et al., 1993; Reilly et al., 1995). He also found time to study the neuropathy in Friedreich’s ataxia, giant axonal neuropathy, x-linked bulbospinal neuronopathy and cerebrotendinous xanthomatosis (Harding et al., 1982; Donaghy et al., 1988a, b, 1990; Jilpimolmard et al., 1993).

In his final years of research, P.K. became involved in two exciting projects: one investigating rare inherited neuropathies in the Roma gypsies in Eastern Europe, and the second developing transgenic mice to investigate the pathogenesis of Charcot–Marie–Tooth disease 1A due to chromosome 17 duplication. Given his love of travel, it was characteristic of P.K. that his studies of the Roma inherited neuropathies included many trips to Bulgaria to examine the subjects in detail. These studies identified three new neuropathies in the Roma gypsy population, hereditary motor and sensory neuropathy–Lom (HMSN-Lom) due to mutations in the N-myc downstream-regulated gene (Kalaydjieva et al., 1996, 1998, 2000), congenital cataracts facial dysmorphism neuropathy syndrome (CCFDS) associated with mutations resulting in partial deficiency of C-terminal domain phosphatase of RNA polymerase II (Tournev et al., 1999; Varon et al., 2003) and HMSN-Russe linked to chromosome 10q22–q23 (Thomas et al., 2001).

P.K. was naturally attracted to the use of transgenic animals to investigate the pathogenesis of inherited neuropathies, because it married his clinical interest in this field to the lifelong use of animal models to study peripheral nerves. This is exemplified by his earlier studies of the peripheral nerves of diabetic rats. Together with colleagues, he published several studies of PMP22 transgenic mice (Robertson et al., 1999, 2002; Perea et al., 2001). His paper with Perea, Huxley and colleagues, published in Human Molecular Genetics in 2001, is particularly noteworthy, because the authors created a transgenic model in which mouse PMP22 over-expression could be regulated. As expected, over-expression of PMP22 caused demyelination but what was particularly exciting about this paper was that switching off over-expression of PMP22 corrects the demyelination and allows normal myelin to form (Perea et al., 2001). This paper has become the basis for subsequent therapeutic trials in Charcot–Marie–Tooth disease 1A transgenic animals and, in recent years, of ascorbic acid (which reduces the expression of PMP22 in transgenic mice) in humans.

The investigation of inherited neuropathies has reached an exciting phase in the 21st century. Discovery of the many causative genes and the subsequent study of the pathogenesis of their associated neuropathies in transgenic animals have made the development of therapies an achievable reality. The current field is indebted to P.K. Thomas, who was one of its pioneers.

### P.K. as an editor of monographs

In the early 1970s, WB Saunders Inc. of Philadelphia encouraged Dr Peter Dyck to produce a multi-authored book covering the neurobiology of the peripheral nervous system and its diseases. An obvious choice for a co-editor was his colleague, Dr Ed(ward) Lambert, a pioneer of the neurophysiology of nerve and muscle. The other co-editor invited to participate was P.K. Thomas, who by then had become internationally recognized. P.K.’s response to the invitation came in a letter dated 7 June 1971, and indicated a high degree of enthusiasm for the project:

‘I would be most excited at the prospect...of producing a really worth-while book on this topic’. In the same letter, he
provided his vision for the project, ‘There is clearly a need at the
present for a concise and authoritative work on peripheral neur-
opathy to put across the substantial amount of new thoughts and
work that have developed over the past 10–15 years… I would be
pleased to collaborate with you… a reasonably harmonious blend
of contributors, would be desirable’. P.K. was true to his word,
and was viewed as an invaluable co-editor through the first three
editions (Dyck et al., 1975, 1984, 1993). P.K.’s participation in
editing the fourth edition was limited due to his stroke in 2001
(Dyck and Thomas, 2005).

P.K. also was co-editor with Peter Dyck of both editions of
Diabetic Neuropathy (Dyck et al., 1987; Dyck and Thomas,
1999). He participated enthusiastically in all aspects of the pro-
duction of these books – choice of subjects and authors, editing
of chapters and writing many chapters himself, sometimes filling in
for delinquent authors. He was said to enjoy the detailed copy-
editing of manuscripts. P.K. was deservedly proud of his careful
and exact use of language and correct punctuation. He told Dr Dyck that this interest grew from instruction received in a
Bible school. P.K.’s later collaborator, Gareth Llewelyn, recently
provided further information in a letter to Dr Dyck (1 January
2010): ‘P.K. was at the Bible College School in Derwen Fawr,
Swansea (now called Emmanuel School). The Headmaster was
Kenneth McDougall (Mac) who wrote to me about P.K. The
teacher who remembered most about P.K. was Dr Kingsley
Priddy, who was P.K.’s biology teacher (later Headmaster at
Emmanuel) and who told me he used P.K.’s essays as examples
because of his succinct and attractive style of writing’.

**P.K. as an editor of journals**

P.K. edited three journals during his career.

Co-Chief Editor of the *Journal of Neurology* (1979–81)

His first experience as an editor was a 2-year stint as Co-Chief
Editor of the *Journal of Neurology*, along with Professor Marco
Mumenthaler, from 1979 to 1981. At that time, the *Journal of
Neurology* (formerly the *Zeitschrift fur Neurologie*) was a
free-standing journal that was published infrequently, from one
to perhaps three times per year. As far as can be determined,
P.K. wrote no editorials during his 2-year stint as Co-Chief
Editor, but he did co-author and publish a paper of minor import-
ance in the journal with his wife, Anita Harding. P.K. also had no
role in the negotiations some years later in which the European
Neurological Society established the *Journal of Neurology* as its
official journal.

Editor of *Brain* (1982–91)

P.K. was invited by the Guarantors of *Brain*, through their chair-
man Bryan Matthews, to take over as editor in 1982, succeeding
Charles Phillips. This was the tenth editorial term and P.K. the
13th person to hold that office (the journal having been estab-
lished and edited by four people from 1878: John Bucknill, James
Crichton-Browne, David Ferrier and John Hughlings Jackson). For
104 years, the quarterly issues of *Brain* had frequently included
classic papers that charted the evolution of ideas on organization
of the nervous system in health and disease. The authority of
*Brain* as the pre-eminent journal of neurology had gone largely
unchallenged. But, by 1982, readers’ appetites were changing and
*Brain* could no longer expect to dominate publishing in clinical
neuroscience merely on past reputation. *Annals of Neurology*,
first published in 1977 under the editorship of Fred Plum, was
emerging as an alternative, even a better, vehicle for high
impact papers that were more often cited and sometimes even
read. This erosion of position was not helped by the perception
that *Brain* published mainly long experimental studies dependent
upon classical physiological methods and ignoring the emerging
technologies of experimental medicine. This is perhaps an unchar-
itable view of the journal that P.K. inherited. With Ronald Henson
as Deputy Editor, Charles Phillips, Professor of Anatomy in Oxford
and trained in the Sherringtonian school of physiology, routinely
published papers of direct relevance to clinical neurology. But the
authorship was distinctly Anglo-centric, such that the majority
of manuscripts came from a community of UK-based contributors
and those with connections to British neurology. Charles Phillips
published 290 articles occupying 5931 pages, contained in
28 issues over 7 years (mean 847 per annum, 212 pages per
issue and 19 pages per article); P.K. was responsible for 750 art-
cles occupying 13 488 pages published in 51 issues over 9.5 years
(mean 1419 per annum, 264 pages per issue and 18 pages per article). The number of pages per volume was 887 when P.K. took
over in 1982 and 2723 when he demitted office in 1991. The
challenge for the Guarantors of *Brain* was that P.K. attracted
and accepted an increasing number of papers that had to be
accommodated within a fixed page allocation. This expansion
was managed by the decision, from 1986, to move from quarterly
publication to six issues per annum. But a backlog still accumu-
lated and, with the appointment of Ian McDonald as editor in
1991, the Treasurer negotiated with the Guarantors to buy extra
pages from Oxford University Press, and two issues of *Brain*
therefore appeared in February 1991—together making up 681
pages, almost as many as the entire annual volume when P.K.
assumed the editorship in 1982.

‘Edited’ is the defining style of the P.K. era. No editor since, and
probably no one before, committed himself to such hands-on in-
volved with the individual manuscripts. P.K. inherited the for-
midable Ms Elizabeth Macdougall who had served the journal
during the editorships of Lord Brain (1954), Denis Williams
(1967) and Charles Phillips, being appointed Assistant Editor by
the latter from 1974 until her retirement in 1991. She communi-
cated with authors in letters typed on thick grey A5-sized note-
paper, but her role was essentially administrative. As illustrated in
Figure 1, no one active in the world of neurology during the
1980s will fail to recall the sight of P.K., weighed down by his
shoulder bag measuring ~16 × 12 × 10 inches, in which all papers
in production were carried. Anywhere and everywhere—airport
lounge, conference auditorium, restaurant, before and after an
out-patient clinic and at any time when no other essential activity
was actually taking place—one or other typescript would be on
P.K.’s lap with him neatly scoring in and out changes and revised
wordings. These were not suggestions for the author to consider but extensive and non-negotiable rewritings needed to create economy of presentation and a narrative style reflecting the strong cultural tradition for language with which he had grown up. A typical letter to an author might have comments such as: ‘In Wales, Parry Jones would have a hyphen’ or ‘Although Von Hippel and Lindau were different people, they should be hyphenated’ or ‘Luxol fast blue is not a good stain for paraffin sections to show minor degrees of demyelination. Your next paper in Brain should use plastic-embedded sections!’

It is now common practice for journal editors to delegate much of the reviewing of papers to sub-editors and to outside reviewers. P.K.’s style was different; as reviewer or as editor, he chose to be the friendly but critical collaborator of authors. He tried to help authors ask clear and important questions, provide factual results and then come to reasonable conclusions, clearly and accurately stated. P.K. was willing to change his mind concerning editorial decisions—not commonly done today. In one scientific article that was accepted for publication (Dyck et al., 1985), P.K. asked the senior author to withdraw a reference to Deuteronomy 17:6, the Hebrew Scripture, St. James version of the Bible, on the grounds that the reference was old and of a religious nature. The senior author argued that it should be retained because it was the earliest reference to the idea that scientific evidence may be more sensitive when it comes from only one line of evidence but is more reliable (specific) when it comes from several lines of evidence. P.K. allowed the reference to remain in the text, but removed it from the list of scientific references—a Solomonic decision!

P.K. asked Larry Weiskrantz, Professor of Experimental Psychology in Oxford to serve as Deputy Editor; and he made changes to the small existing editorial board. Leo Duchen, Leslie Iversen, Ian McDonald, John Newsom-Davis and Tom Sears formed the new advisory group; each remained throughout P.K.’s tenure, being joined by Michael Harrison and David Marsden and, in recognition of the international role of Brain, by five experts based outside the UK [Edoardo Bisiach (Italy), Yves von Cramon (Germany), Krister Kristensson (Sweden), Emmanuel Pierrot-Deseilligny (France) and Marcus Raichle (USA)].
More papers, more pages, bulkier annual volumes, fewer wasted words are all quantifiable data that signal P.K.’s tenure as editor of *Brain*; but what of the contents and reputation? The first paper P.K. published in *Brain* was written by his wife, Anita Harding, on late onset autosomal dominant cerebellar ataxia afflicting the Drew family of Walworth (Harding, 1982); and the last was on physiological responses in the cat brainstem and upper cervical cord in response to painful stimulation of the superior sagittal sinus (Goadsby and Zagami, 1991). In between, there appeared a rich and diverse menu of discovery and opinion from the sages of neurology and young investigators, covering the spectrum of experimental studies and clinical analyses, addressing all aspects of structure and function in brain, nerve and muscle, both in health and disease, and drawing on methodologies that had moved on from smoke drums and feline physiology. Gently but firmly, P.K. started the essential and somewhat overdue process of making *Brain* attractive to a modern readership but without losing sight of its illustrious historical heritage.

**Chief Editor of the Journal of Anatomy (1990–2001)**

When P.K. was appointed as Editor of the *Journal of Anatomy*, he first redesigned the cover, giving it a livelier, more modern appearance, and then gave preference to papers that emphasized the science underlying anatomical and pathological structures. The insightful description of Mr Edward Fenton, current and long-term Managing Editor of the *Journal of Anatomy*, characterizes P.K.’s impact as Editor: ‘I was editorial assistant on *Journal of Anatomy*, and later managing editor, during most of P.K.’s editorship. He modernized the journal in many respects—switching from an antiquated and bulky hardcover format to a more attractive looking paperback version, adding cover illustrations, first in monochrome and later in colour, and making the content of the journal more attractive by scrapping charges for colour reproduction. Before he took over, papers were sent to a single reviewer, usually from a very small pool of trusted associates. He expanded the net hugely, calling on the services of experts worldwide, no matter whether they had any previous contact with the journal. For him, the most important thing was that papers were reviewed by the best people, and that then they were published in a readable and scientifically accurate way (he personally edited every single paper that was published under his editorship). During P.K.’s editorship the digital revolution changed the way that journals are produced, and he embraced this wholeheartedly’.

**P.K. as a leader**

P.K. exerted exemplary leadership skills in all of his professional roles. These were evident in building the successful Department of Neurology at the Royal Free Hospital School of Medicine and its teaching, research and clinical training programmes. Leadership was also evident in all of his professional endeavours, but was especially noteworthy in the pivotal role he played in the establishment and subsequent success of the European Neurological Society. In 1986, it was suggested to P.K. that the absence of a forum in Europe similar to the meetings sponsored annually by the American Academy of Neurology was a significant problem. Based on regular attendance at the meeting of the Academy, the idea emerged of a European association based on individual rather than institutional membership. A principal reason was to avoid the burden of national representatives. P.K. found the idea interesting, thought about it carefully for some time, discussed it with his wife, and formally agreed to embark upon this venture, along with Anita and Gerard Said, when the three met in July 1986 at the International Congress of Neuromuscular Disorders in Los Angeles. The European Neurological Society (ENS) was soon born.

Contemporaneously, the Danubian Congress of Neurology was transformed into the European Federation of Neurological Societies, in an effort to represent the national societies of neurology throughout Europe. This had been suggested by the president of the World Federation of Neurology, and following discussions on the subject within its management committee, the European Federation of Neurological Societies, based on national representatives, was founded.

There followed a number of ‘neuro-political’ problems with respect to the newly formed European Neurological Society and the European Federation of Neurological Societies. Many of these problems occurred because some representatives of the national neurological societies thought they had not received roles and titles in the European Neurological Society that their status deserved. P.K. proved to be very effective in solving most of these conflicts through his characteristic tact, diplomacy and reason. A few remained unsolved.

As a founding member of the European Neurological Society, P.K. was the natural choice as its first President. At the inaugural meeting of the European Neurological Society in Nice (June 1988), he gave the opening address on ‘consciousness and causality’. The lecture was widely regarded as a masterpiece, demonstrating to all present what colleagues of P.K. already knew well, namely that his neurological expertise and depth of knowledge extended far beyond the subject of peripheral nerve disorders. P.K. and with Anita Harding themselves organized the second congress (Brighton, 1990). Throughout, P.K. contributed to the organization of European Neurological Society meetings in a number of ways. As a teacher, he ran many courses on peripheral neuropathies. As an indefatigable editor, he reviewed and edited relentlessly the scientific abstracts to be published in the *Journal of Neurology*. He did not tolerate abstracts written in broken English. As a result, on many occasions, the heavily edited texts had to be retyped in haste and then rushed to the printer by overnight mail. The multiple skills and stainless reputation of P.K. greatly contributed to the future of the European Neurological Society, which grew steadily in prominence and scale. Its annual meetings are now attended by several thousand neurologists. Meetings of the European Neurological Society have, as originally conceived, facilitated much collaboration between departments of neurology throughout Europe and beyond, an outcome in which P.K. rejoiced.

The fellowships awarded to young academic neurologists from all over Europe and beyond to attend the European Neurological Society meetings have played a significant role in establishing a network of neurologists interested in research and teaching.
P.K. considered this to be a highly desirable outcome. Now, more than 20 years after the first European Neurological Society meeting, many positive changes in the overall neurological environment in Europe can be sensed. P.K. played an important role in bringing about these changes, which were quite consistent with his democratic outlook and ideals.

P.K. retained a youthful enthusiasm for the many years he served on the Executive Committee of the European Neurological Society. His sense of humour and conviviality were ever present during Executive Committee meetings and the dinners that followed, when P.K. often told amusing stories. These were not always fully accessible to those for whom English is not the mother tongue, but the way P.K. laughed at the end of his own stories was very contagious.

Conclusion

The principal thrust of this summation and weighing of the achievements of Professor P. K. Thomas is, by design, focused on the professional and scientific aspects of his career. These are impressive indeed. What also rightly comes through is a memory of the person—strength of character and personality—that force creeps into any detached analysis of the professional accomplishments. P.K. was exceptionally hard working; but he also played hard, often staying up to all hours at nightspots, restaurants and pubs with friends and visiting colleagues from all over the world, only to rise early for work the next day. He liked to have a good time almost as much as he liked to work. It followed that it was common for him to nod off if attending a lecture in a semi-darkened hall, mainly because, by his own will and habit, he was frequently sleep-deprived.

P.K. also never forgot his Welsh roots, and further, was egalitarian and generous in all of his relationships, whether they involved a peer of the realm, the cleaning lady, a visiting registrar from the Antipodes, or junior physicians. P.K. was his own man. While these aspects of his personality provide insight into P.K.—the man, physician and scientist—it was his industry, intellect, character and humility that made him so effective, successful and well liked.

Supplementary material

Supplementary material is available at Brain online.

References

Cragg BG, Thomas PK. The relationships between conduction velocity and the diameter and internodal length of peripheral nerve fibres. J Physiol 1957; 136: 606.


Thomas PK. The influence of repeated crush injuries on the nuclear population of peripheral nerve. J Physiol 1969; 201: 69P.


