Glycine receptor antibodies in PERM: a new channelopathy

This scientific commentary refers to ‘Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes’, by Carvajal-González et al. (doi:10.1093/brain/awu142).

Ligand- or voltage-gated ion channels can be affected by mutation or autoimmune attack, leading to so-called channelopathies. A number of CNS disorders, such as limbic encephalitis and certain forms of epilepsy, have been shown to associate with specific serum autoantibodies against ion channels or related proteins (Irani and Lang, 2008). In 2008, the glycine receptor (GlyR) was first recognized as a possible target for autoantibodies in a patient with progressive encephalomyelitis, rigidity and myoclonus (PERM) (Hutchinson et al., 2008). The GlyR is a member of a superfamily of ligand-gated ion channels that also includes N-methyl-D-aspartic acid (NMDA) receptors and nicotinic acetylcholine receptors. GlyRs are present throughout the brain, but are most abundant in the spinal cord and brainstem. The GlyR is also the target of the alkaloid strychnine, which causes generalized muscle spasms and cramps, muscle stiffness and tightness, agitation, heightened awareness and responsiveness, stimulation-evoked seizures, myoclonus, respiratory failure, and sometimes death. For comparison, the symptoms of PERM include muscle spasms, cramps, myoclonus, stimulus-evoked startle and respiratory failure. In this issue of Brain, Carvajal-González et al. (2014) report the presence of antibodies against the GlyR in a relatively large cohort of patients with PERM, and describe the characteristics and clinical features of these patients. Using cellular assays, the authors present strong evidence that GlyR antibodies are the causative agents in this disorder.

The main clinical significance of this paper is that it demonstrates that PERM is a treatable autoimmune disease. There is considerable symptom overlap between PERM, stiff person syndrome and neuromyotonia. Moreover, antibodies against glutamic acid decarboxylase and the voltage-gated potassium channel complex have been detected in both PERM and stiff person syndrome. In the current study, Carvajal-González et al. prospectively identified 52 patients with GlyR antibodies, and classified 33 of these as PERM, two as stiff person syndrome and five as limbic encephalitis or epileptic encephalopathy. Patients with PERM were initially identified by the presence of GlyR antibodies, but the final classification was based on Meinck (2008). The GlyR is a member of a superfamily of ligand-gated ion channels that also includes N-methyl-D-aspartic acid (NMDA) receptors and nicotinic acetylcholine receptors. GlyRs are present throughout the brain, but are most abundant in the spinal cord and brainstem. The GlyR is also the target of the alkaloid strychnine, which causes generalized muscle spasms and cramps, muscle stiffness and tightness, agitation, heightened awareness and responsiveness, stimulation-evoked seizures, myoclonus, respiratory failure, and sometimes death. For comparison, the symptoms of PERM include muscle spasms, cramps, myoclonus, stimulus-evoked startle and respiratory failure. In this issue of Brain, Carvajal-González et al. (2014) report the presence of antibodies against the GlyR in a relatively large cohort of patients with PERM, and describe the characteristics and clinical features of these patients. Using cellular assays, the authors present strong evidence that GlyR antibodies are the causative agents in this disorder.

The main clinical significance of this paper is that it demonstrates that PERM is a treatable autoimmune disease. There is considerable symptom overlap between PERM, stiff person syndrome and neuromyotonia. Moreover, antibodies against glutamic acid decarboxylase and the voltage-gated potassium channel complex have been detected in both PERM and stiff person syndrome. In the current study, Carvajal-González et al. prospectively identified 52 patients with GlyR antibodies, and classified 33 of these as PERM, two as stiff person syndrome and five as limbic encephalitis or epileptic encephalopathy. Patients with PERM were initially identified by the presence of GlyR antibodies, but the final classification was based on Meinck (2008). The GlyR is a member of a superfamily of ligand-gated ion channels that also includes N-methyl-D-aspartic acid (NMDA) receptors and nicotinic acetylcholine receptors. GlyRs are present throughout the brain, but are most abundant in the spinal cord and brainstem. The GlyR is also the target of the alkaloid strychnine, which causes generalized muscle spasms and cramps, muscle stiffness and tightness, agitation, heightened awareness and responsiveness, stimulation-evoked seizures, myoclonus, respiratory failure, and sometimes death. For comparison, the symptoms of PERM include muscle spasms, cramps, myoclonus, stimulus-evoked startle and respiratory failure. In this issue of Brain, Carvajal-González et al. (2014) report the presence of antibodies against the GlyR in a relatively large cohort of patients with PERM, and describe the characteristics and clinical features of these patients. Using cellular assays, the authors present strong evidence that GlyR antibodies are the causative agents in this disorder.

The main clinical significance of this paper is that it demonstrates that PERM is a treatable autoimmune disease. There is considerable symptom overlap between PERM, stiff person syndrome and neuromyotonia. Moreover, antibodies against glutamic acid decarboxylase and the voltage-gated potassium channel complex have been detected in both PERM and stiff person syndrome. In the current study, Carvajal-González et al. prospectively identified 52 patients with GlyR antibodies, and classified 33 of these as PERM, two as stiff person syndrome and five as limbic encephalitis or epileptic encephalopathy. Patients with PERM were initially identified by the presence of GlyR antibodies, but the final classification was based on Meinck (2008). The GlyR is a member of a superfamily of ligand-gated ion channels that also includes N-methyl-D-aspartic acid (NMDA) receptors and nicotinic acetylcholine receptors. GlyRs are present throughout the brain, but are most abundant in the spinal cord and brainstem. The GlyR is also the target of the alkaloid strychnine, which causes generalized muscle spasms and cramps, muscle stiffness and tightness, agitation, heightened awareness and responsiveness, stimulation-evoked seizures, myoclonus, respiratory failure, and sometimes death. For comparison, the symptoms of PERM include muscle spasms, cramps, myoclonus, stimulus-evoked startle and respiratory failure. In this issue of Brain, Carvajal-González et al. (2014) report the presence of antibodies against the GlyR in a relatively large cohort of patients with PERM, and describe the characteristics and clinical features of these patients. Using cellular assays, the authors present strong evidence that GlyR antibodies are the causative agents in this disorder.
directly. Carvajal-González and colleagues used in vitro studies to analyse GlyR autoantibody effector mechanisms. Their results clearly indicate that GlyR antibodies degrade their target by antigenic modulation. Moreover, because a large proportion of the GlyR antibodies were of the IgG1 and IgG3 isotypes, they also activated complement on GlyR-expressing cells in vitro. To what extent these mechanisms contribute to patho-
logy in vivo is likely to depend on how densely GlyRs are clustered by their anchoring protein gephyrin. At the neuromuscular junction, expression of such anchoring proteins was shown to strongly affect antigenic modulation of ion channels by auto-

antibodies in vivo (Martinez-Martinez et al., 2007, for review
see Souroujon et al., 2010). It would be useful to establish an active immunization with GlyR, or a passive transfer animal model with patient-derived monoclonal GlyR antibodies, to inves-
tigate pathogenic mechanisms and to test symptomatic or immunsuppressive therapies, or complement inhibitors. Given that some patients did not respond to sustained immunosuppres-
sive treatment, there might be a role for plasma cell targeting therapies (Gomez et al., 2012) in the treatment of PERM to rapidly reduce autoantibody production. In this regard, studies in another antibody-mediated neurological disease, myasthenia gravis, could provide a valuable reference (Souroujon et al.,
2010). Additionally, it would be interesting to use electrophysio-
logical methods to address the question of whether GlyR anti-

bodies have any direct effects on their target. Such effects could include competitive or allosteric impairment of ligand binding, or alternatively, impairment of ion channel function independent of ligand binding. In either case, this would cause a diminished chloride ion influx, and thus reduced neuronal inhibition, upon release of glycine from nerve terminals. This would lead to PERM being defined as a GlyR channelopathy, being the autoimmune counterpart of hereditary hyperekplexia caused by GlyR muta-
tions (OMIM 138491). It should be noted that there are other chloride channelopathies—namely the Thomsen and Becker types of myotonia congenita—which are caused by mutation of the

CLCN1 gene that codes for the voltage-dependent CLC-1 chlor-
ide channel in skeletal muscle. These mutations reduce chloride channel function, leading to hyperexcitability, delayed relaxation and stiffness of muscle fibres.

What is the physiological effect of reduced chloride currents in excitable tissue? The Nernst equilibrium potential for chloride ions is about −70 mV, which is identical or very close to the resting potential of neurons. Thus, when chloride channels open, the membrane potential does not change very much, but any depolarizing input will be strongly dampened because the elec-
trical charge carried by sodium ions entering the neuron will be shunted by the chloride ion conductance. Overall, impaired function of mutated voltage-dependent chloride channels in muscle, or impairment of ligand-gated chloride channels in the brainstem and spinal cord, causes hyperexcitability, leading ei-
ther to myotonia or the encephalomyelitis and rigidity seen in PERM.

The message for clinicians is that many brain disorders, or sub-
groups of them, may be caused by autoantibodies. This extends also to psychiatry, where a number of syndromes seem to have subgroups in which autoantibodies are involved. Moreover, the possibility of a paraneoplastic origin should be investigated in autoantibody-positive patients. The fact that antibody ‘attack’ in the brain does not necessarily involve neuronal damage gives reason to be hopeful as symptoms can be expected to disappear following immunotherapy. However, as long as the production of antibodies persists, sustained immunosuppression may be required.

Pilar Martinez-Martinez, Peter C. Molenaar, Mario Losen and
Marc H. de Baets
Department for Neuroscience, The School for Mental Health and
Neuroscience, Maastricht University, The Netherlands

Correspondence to: Marc H. de Baets.
E-mail: m.debaets@maastrichtuniversity.nl
doi:10.1093/brain/awu153

References
Carvajal-González A, Leite MI, Waters P, Woodhall M, Coutinho E,
Balint B, et al. Glycine receptor antibodies in PERM and related
syndromes: characteristics, clinical features and outcomes. Brain
Cutler RW, Watters GV, Hammerstad JP. The origin and turnover rates
of cerebrospinal fluid albumin and gamma-globulin in man. J Neurol
Espay AJ, Chen R. Rigidity and spasms from autoimmune
encephalomyelopathies: stiff-person syndrome. Muscle Nerve 2006;
34: 677–90.
Gomez AM, Willcox N, Molenaar PC, Buurman W, Martinez-Martinez P,
De Baets MH, et al. Targeting plasma cells with proteasome inhibitors:
possible roles in treating myasthenia gravis? Ann N Y Acad Sci 2012;
Hutchinson M, Waters P, McHugh J, Gorman G, O’Riordan S,
Connolly S, et al. Progressive encephalomyelitis, rigidity, and
myoclonus: a novel glycine receptor antibody. Neurology 2008; 71:
1291–2.
Irani S, Lang B. Autoantibody-mediated disorders of the central nervous
Martinez-Martinez P, Losen M, Duimel H, Frederik P, Spaans F,
Molenaar P, et al. Overexpression of rapsyn in rat muscle increases
acetylcholine receptor levels in chronic experimental autoimmune my-
Martinez-Martinez P, Molenaar PC, Losen M, Stevens J, Baets MH,
Szoke A, et al. Autoantibodies to neurotransmitter receptors and ion
channels: from neuromuscular to neuropsychiatric disorders. Front
Meinck HM, Thompson PD. Stiff man syndrome and related
conditions. Movement disorders: official Move Disord 2002; 17:
853–66.
Souroujon MC, Brenner T, Fuchs S. Development of novel
therapies for MG: studies in animal models. Autoimmunity 2010; 43:
446–60.