Altered expression of α3-containing GABA$_A$ receptors in the neocortex of patients with focal epilepsy

Fabienne Loup,1,7 Fabienne Picard,4 Véronique M. André,5,8 Pierre Kehrli,6 Yasuhiro Yonekawa,2 Heinz-Gregor Wieser3 and Jean-Marc Fritschy1

1Institute of Pharmacology and Toxicology, University of Zurich, 2Department of Neurosurgery and 3Department of Neurology, University Hospital Zurich, Zurich, 4Department of Neurology, University Hospital and Medical School of Geneva, Geneva, Switzerland, 5INSERM Faculty of Medicine and 6Service de Neurochirurgie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France

7Present addresses: Swiss Epilepsy Center, Zurich, Switzerland and 8The Mental Retardation Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA

Correspondence to: Dr Fabienne Loup, Swiss Epilepsy Center, Bleulerstrasse 60, CH-8008 Zurich, Switzerland
E-mail: loupf@pharma.unizh.ch

Impaired transmission in GABAergic circuits is thought to contribute to the pathogenesis of epilepsy. Although it is well established that major reorganization of GABA$_A$ receptor subtypes occurs in the hippocampus of patients with medically refractory temporal lobe epilepsy (TLE), it is unclear whether this disorder is also associated with alterations in GABA$_A$ receptor subtypes in the neocortex. Here we have investigated immuno-histochemically the subunit composition and neocortical distribution of three major GABA$_A$ receptor subtypes using antibodies specifically recognizing the subunits α_1, α_2, α_3, $\beta_2/3$ and γ_2. Cortical tissue was obtained at surgery from patients with TLE and hippocampal sclerosis (HS; $n=9$), TLE associated with neocortical lesions (non-HS; $n=12$) and frontal lobe epilepsy (FLE; $n=5$), with post-mortem samples serving as controls ($n=4$).

A distinct laminar and neuronal expression pattern of the α-subunit variants was found across the neocortical regions examined in the temporal and frontal lobes in both control and patient tissue samples. In the five patients with FLE, GABA$_A$ receptor subunit staining was unchanged as compared to controls. In patients with TLE we observed a marked decrease in α_3-subunit staining in the superficial neocortical layers (I–III), but no change in the deep layers (V and VI) or in the expression pattern of the α_1 and α_2-subunits. Reduced expression in α_3-containing GABA$_A$ receptors was detected in six out of nine patients of the HS group and four out of twelve patients of the non-HS group. Histopathological changes were present in eight out of the ten patients with decreased α_3-subunit staining. The selective reduction in α_3-containing GABA$_A$ receptors was confirmed using semiquantitative measurements of optical density (OD). The specific changes unique to α_3-subunit expression in the superficial neocortical layers of patients with TLE suggest that this subtype is of particular significance in the reorganization of cortical GABAergic systems in focal epilepsy.

Keywords: cerebral cortex; GABA; human; seizures; temporal lobe epilepsy

Abbreviations: ECoG = electrocorticography; FLE = frontal lobe epilepsy; HS = hippocampal sclerosis; OD = optical density; TLE = temporal lobe epilepsy

Received May 30, 2006. Revised September 10, 2006. Accepted September 11, 2006

Introduction

A variety of evidence indicates that inhibitory brain circuits, which depend primarily on signalling through GABA$_A$ receptors, are functionally impaired in epilepsy. Thus, blocking GABA$_A$ receptors pharmacologically promotes the generation of seizures in animals and in humans, whereas drugs that enhance GABA$_A$ receptor function are effective in treating seizures. This straightforward notion becomes more complex, however, when taking into account the wide array
of structurally and functionally distinct GABA_A receptor subtypes found in the central nervous system. Nineteen GABA_A receptor subunits (α1–6, β1–3, γ1–3, δ, ε, π, θ, ρ1–3) have been identified and cloned from the mammalian CNS (Simon et al., 2004), which theoretically can assemble into a vast number of distinct pentameric receptors. In fact, only a few dozen of these potential combinations are found in the brain, most of which include at least one of each of the α, β and γ subunit class (Fritschy and Möhler, 1995; Pirker et al., 2000). Furthermore, these distinct receptor subtypes are preferentially expressed in specific regions and neuronal populations and they exhibit different sensitivities to modulators including neurosteroids, benzodiazepines, ethanol and barbiturates (Sieghart and Sperk, 2002; Fritschy and Brünig, 2003).

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy in adults, and, when associated with hippocampal sclerosis (HS), is the most refractory to pharmacotherapy (Wieser and ILAE Commission on Neurosurgery of Epilepsy, 2004). Although abundant human data are available regarding reorganization of GABAergic interneuron circuits in the neocortex and hippocampus of TLE patients (DeFelipe, 1999; Sperk et al., 2004; Maglóczky and Freund, 2005), most studies aimed at characterizing the alterations of individual GABA_A receptor subtypes in human TLE have focused on the hippocampus (Brooks-Kayal et al., 1999; Loup et al., 2000; Pirker et al., 2003; Porter et al., 2005). Previous immunohistochemical investigations of GABA_A receptors in the neocortex of patients with refractory focal epilepsy were restricted to the α1-subunit (Wolf et al., 1994, 1996b). Results from autoradiographic investigations in the neocortex of patients with pharmacoresistant epilepsy yielded divergent conclusions, reporting no changes, decreases or increases in GABA_A receptors (Olsen et al., 1992; Burdette et al., 1995; Nagy et al., 1999; Zilles et al., 1999; Sata et al., 2002). In vivo imaging studies using ¹¹C-flumazenil, an antagonist at the benzodiazepine–GABA_A receptor complex, have shown both focal increases and decreases of flumazenil binding in the neocortex of patients with partial epilepsy (Theodore, 2002; Koepp and Woermann, 2005). Although flumazenil-PET studies are indispensable for tracking changes in living subjects, the resulting images provide low spatial resolution of GABA_A receptor distribution and flumazenil fails to distinguish between the different GABA_A receptor subtypes. In the present study, we have used an immunohistochemical approach to investigate alterations in GABA_A receptor subtype organization in neocortex removed at surgery from patients with medically intractable focal epilepsy. Tissue was processed following a protocol based on microwave irradiation to visualize the major GABA_A receptor subunits α1, α2, α3, β2/3 and γ2 with subunit-specific antisera (Loup et al., 1998). Other potentially relevant subunits could not be studied as the corresponding antisera effective in human brain tissue are not yet available.

Material and methods

Patient selection, intraoperative electrocorticography

Twenty-six patients undergoing surgery for medically intractable focal epilepsy were included in this study. Brain tissue was obtained from the neurosurgical units of the University Hospitals of Zurich, Geneva and Strasbourg. All procedures were performed with the informed consent of the patients or legal next of kin and were approved by the ethics committees of the respective institutions according to the Declaration of Helsinki. Presurgical assessment comprised high-resolution MRI, PET with ¹⁸Fuoro-2-deoxyglucose and/or ictal and interictal single photon emission computed tomography for all cases, functional MRI in six cases, and magnetic resonance spectroscopy (MRS) in five cases. All patients underwent scalp EEG and, where indicated, invasive or semi-invasive EEG recordings were obtained (Zumsteg and Wieser, 2000). Based on the histopathological findings in conjunction with neuroimaging, EEG and clinical data, patients were categorized into those with frontal lobe epilepsy (FLE) (n = 5, mean age at surgery ± SD: 22.6 ± 12.3 years, range 5–34 years) and those with TLE. The latter group was further subdivided into those with HS (n = 9, mean age at surgery ± SD: 39.6 ± 14.4 years, range 12–56 years) and those with neocortical lesions (non-HS; n = 12, mean age at surgery ± SD: 28.3 ± 12.2 years, range 9–49 years). Patients with focal cortical dysplasia (FCD) alone were specifically excluded. Relevant clinical data are summarized in Table 1.

Intraoperative electrocorticography (ECoG) was performed in 18 of 26 patients with grids of 4 × 8 electrodes and/or with strips of four electrodes (Pt/ir) embedded in Silastic sheets (Ad-Tech, Racine, WI). In FLE patients, electrodes were placed over the exposed prefrontal and polar cortex and positioning of the grid and strip electrodes was modified to record from neighbouring areas where indicated. In TLE patients, the 4 × 8 grid was placed over the anterior and middle temporal lateral and inferior cortex and the strip electrode was positioned on the intraventricular hippocampus allowing for simultaneous recording from lateral and inferior temporal neocortex and from hippocampus. Centre-to-centre inter-electrode distance was 1 cm, the diameter of each electrode was 1.2 mm. Recordings were sampled at 400 Hz, with a bandwidth of 1–70 Hz over a minimum period of 25 min, using a 32-channel Nihon-Kohden EEG system. Spiking areas were defined where electrodes showed spikes and/or sharp waves with a mean frequency greater than 1 spike/min (> 20 spikes/min). Non-spiking areas were defined where electrodes showed no epileptiform graphoelements. Degree of spiking (+, +++, ++), 1–10; ++, 11–20; +++>, > 20 spikes/min). Non-spiking areas were defined where electrodes showed no epileptiform graphoelements. Degree of spiking (+, +++, ++++) was taken into account, as well as propagation if present. ECoG was carried out before resection and repeated during the surgical procedure as necessary. After surgical ablation, ECoG was performed again and showed either spike-free activity or residual spiking at the resection border. Residual spiking was anatomically localized and its degree was rated (+, +++, +++, +++)

All tissue blocks were from resections performed for strictly therapeutic purposes. The surgical procedures included corticectomy or lesionectomy in the frontal or temporal lobe or anterior temporal lobectomy. Sixteen patients underwent amygdalo-hippocampectomy and HS was confirmed histopathologically in nine of these cases. The neocortical tissue samples originated from the anterolateral temporal neocortex and the frontopolar area, the frontal lateral region, and the orbital part of the inferior gyrus of the frontal lobe. In the patients with a circumscribed pathology, neocortical samples were collected within and adjacent to the...
Table 1 Summary of clinical data and experimental results

<table>
<thead>
<tr>
<th>Patient/sex/age (years)</th>
<th>Location/side</th>
<th>Age at onset</th>
<th>Duration of epilepsy</th>
<th>Seizure frequency at surgery</th>
<th>Prior exposure to barbiturates or BZs</th>
<th>Medication at time of surgery</th>
<th>ECoG neocortex</th>
<th>Histopathology</th>
<th>Postsurgical follow-up (months)</th>
<th>Engel outcome</th>
<th>α3-subunit changes in neocortex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/F/48</td>
<td>T, R/L</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td>—</td>
</tr>
<tr>
<td>2/M/60</td>
<td>T/F, R/L</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td>—</td>
</tr>
<tr>
<td>3/M/69</td>
<td>T, L</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td>—</td>
</tr>
<tr>
<td>4/M/73</td>
<td>T, L</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td>—</td>
</tr>
<tr>
<td>5/M/5</td>
<td>F, R</td>
<td>1</td>
<td>20–30/night</td>
<td>CPS</td>
<td>—</td>
<td>LTG PHT VGB</td>
<td>+++</td>
<td>Mild subpial gliosis</td>
<td>71</td>
<td>IV</td>
<td>No</td>
</tr>
<tr>
<td>6/F/15</td>
<td>F, R</td>
<td>7</td>
<td>1–5/night</td>
<td>CPS SGS</td>
<td>PB CLB</td>
<td>BBC MSM CLB</td>
<td>+++</td>
<td>Venous angiitis</td>
<td>92</td>
<td>IV</td>
<td>No</td>
</tr>
<tr>
<td>7/M/27</td>
<td>F, R</td>
<td>23</td>
<td>3/month</td>
<td>CPS SGS</td>
<td>CLB</td>
<td>LTG VPA</td>
<td>++</td>
<td>Astrocytoma</td>
<td>86</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>8/M/34</td>
<td>F, R</td>
<td>12</td>
<td>20/month</td>
<td>CPS SGS</td>
<td>PRM CLB</td>
<td>LTG VPA OXC</td>
<td>++</td>
<td>Gial scar</td>
<td>85</td>
<td>III</td>
<td>No</td>
</tr>
<tr>
<td>9/M/32</td>
<td>F/T, L</td>
<td>3</td>
<td>4–10/month</td>
<td>CPS SGS</td>
<td>PB CLB</td>
<td>CBZ CZP</td>
<td>+++*</td>
<td>Gial scar</td>
<td>71</td>
<td>II</td>
<td>No</td>
</tr>
<tr>
<td>10/F/56</td>
<td>T, L</td>
<td>12</td>
<td>10/month</td>
<td>CPS SPS</td>
<td>CBZ</td>
<td>OXC CXP LEV</td>
<td>++</td>
<td>HS</td>
<td>56</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>11/F/49</td>
<td>T, L</td>
<td>18</td>
<td>31</td>
<td>CPS SPS</td>
<td>CLB</td>
<td>CBZ VGB</td>
<td>Not done</td>
<td>HS</td>
<td>62</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>12/M/56</td>
<td>T, L</td>
<td>15</td>
<td>41</td>
<td>CPS SPS</td>
<td>PRM</td>
<td>LTG CZP PRM</td>
<td>Non-spiking</td>
<td>HS</td>
<td>51</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>13/F/12</td>
<td>T, R</td>
<td>11</td>
<td>4/month</td>
<td>CPS SPS SGS</td>
<td>PB</td>
<td>STM ++ / +</td>
<td>HS</td>
<td>No/yes</td>
<td>64</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>14/F/35</td>
<td>T, R</td>
<td>8</td>
<td>27</td>
<td>7/month</td>
<td>CPS SGS</td>
<td>CBZ</td>
<td>+++</td>
<td>HS, mild MCD II</td>
<td>8</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>15/M/38</td>
<td>T, R</td>
<td>1</td>
<td>37</td>
<td>8/month</td>
<td>CPS SPS SGS</td>
<td>CBZ LTG</td>
<td>+++</td>
<td>HS, mild MCD II</td>
<td>56</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>16/M/25</td>
<td>T, R</td>
<td>15</td>
<td>10</td>
<td>5/month</td>
<td>CPS SGS</td>
<td>OXC LTG</td>
<td>+++</td>
<td>HS</td>
<td>40</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>17/F/40</td>
<td>T, R</td>
<td>5</td>
<td>35</td>
<td>2/month</td>
<td>CPS SGS</td>
<td>CBZ</td>
<td>Not done</td>
<td>HS</td>
<td>60</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>18/M/45</td>
<td>T, R</td>
<td>5</td>
<td>40</td>
<td>4/month</td>
<td>CPS SGS</td>
<td>CBZ CLB</td>
<td>Not done</td>
<td>HS</td>
<td>56</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>19/M/16</td>
<td>T, R</td>
<td>9</td>
<td>7</td>
<td>4/month</td>
<td>CPS SPS SGS</td>
<td>CBZ</td>
<td>OXV CAO</td>
<td>+++</td>
<td>Epileptoma</td>
<td>84</td>
<td>I</td>
</tr>
<tr>
<td>20/M/15</td>
<td>T, R</td>
<td>6</td>
<td>9</td>
<td>3/month</td>
<td>CPS</td>
<td>CBZ</td>
<td>++</td>
<td>Oligodendrogioma</td>
<td>42</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>21/M/49</td>
<td>T, R</td>
<td>32</td>
<td>17</td>
<td>8/month</td>
<td>CPS SGS</td>
<td>CBZ</td>
<td>Not done</td>
<td>Cavernoma</td>
<td>39</td>
<td>II</td>
<td>No</td>
</tr>
<tr>
<td>22/F/31</td>
<td>T, L</td>
<td>29</td>
<td>2</td>
<td>5/month</td>
<td>CPS</td>
<td>CBZ</td>
<td>OXCA VPA</td>
<td>++</td>
<td>Cavernoma</td>
<td>43</td>
<td>I</td>
</tr>
<tr>
<td>23/M/43</td>
<td>T, L</td>
<td>11</td>
<td>32</td>
<td>4/month</td>
<td>CPS SPS</td>
<td>CBZ</td>
<td>PHT ++</td>
<td>DNT</td>
<td>12</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>24/F/9</td>
<td>T, R</td>
<td>8</td>
<td>1</td>
<td>4/month</td>
<td>CPS</td>
<td>CBZ</td>
<td>++</td>
<td>DNT</td>
<td>56</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>25/M/32</td>
<td>T, R</td>
<td>15</td>
<td>17</td>
<td>5/month</td>
<td>CPS SPS SGS</td>
<td>CBZ</td>
<td>++</td>
<td>Gial scar</td>
<td>64</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>26/M/27</td>
<td>T, R</td>
<td>18</td>
<td>9</td>
<td>5/month</td>
<td>CPS</td>
<td>CBZ</td>
<td>Oligodendrogioma</td>
<td>81</td>
<td>I</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>27/M/22</td>
<td>T, R</td>
<td>15</td>
<td>7</td>
<td>8/month</td>
<td>CPS SGS</td>
<td>CBZ</td>
<td>TGB ++</td>
<td>DNT, FCD IB</td>
<td>48</td>
<td>II</td>
<td>Yes</td>
</tr>
<tr>
<td>28/M/40</td>
<td>T, L</td>
<td>24</td>
<td>16</td>
<td>4–12/month</td>
<td>CPS SGS</td>
<td>CBZ</td>
<td>OXV TGB ++</td>
<td>Ganglioglioma, FCD IB</td>
<td>65</td>
<td>III</td>
<td>Yes</td>
</tr>
<tr>
<td>29/M/34</td>
<td>T, R</td>
<td>30</td>
<td>4</td>
<td>2/month</td>
<td>CPS</td>
<td>CBZ</td>
<td>Not done</td>
<td>Cavernoma</td>
<td>49</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>30/F/20</td>
<td>T, L</td>
<td>18</td>
<td>2</td>
<td>4/month</td>
<td>CPS SGS</td>
<td>CBZ</td>
<td>OXV TGB</td>
<td>Not done</td>
<td>48</td>
<td>I</td>
<td>No</td>
</tr>
</tbody>
</table>

BBC = barbexaclone; BZs = benzodiazepines; CBZ = carbamazepine; CLB = clobazam; CPS = complex partial seizures; CZP = clonazepam; DNT = dysembryoplastic neuroepithelial tumour; F = frontal; FCD = focal cortical dysplasia; HS = hippocampal sclerosis; LEV = levetiracetam; LTG = lamotrigine; mild MCD = mild malformation of cortical development; MSM = mesuximide; OXV = oxcarbazepine; PB = phenobarbital; PHT = phenytoin; PRM = primidone; SGS = secondary generalized seizures; SPS = simple partial seizures; T = temporal; TGB = tiagabine; TPM = topiramate; VGB = vigabatrin; VPA = valproic acid. Classification after Palmini and colleagues for mild MCDs and FCDs (Palmini et al., 2004).

*Preoperative intracranial recordings instead of ECoG.
lesion. Finally, control neocortical tissue from four subjects (mean age ± SD: 62.5 ± 11.1 years, range 48–73 years) with no known history of neurological or psychiatric disorders was collected at autopsy (mean post-mortem interval ± SD: 11.2 ± 3.4 h). Results on the hippocampi of these four subjects were reported in a previous study (Loup et al., 2000). The left, and, in two cases, also the right hemispheres were cut into coronal slabs of 1–1.5 cm thickness. One to three tissue blocks per subject were dissected from parts of the anterolateral temporal neocortex, which corresponded to the areas removed in those patients undergoing surgery for epilepsy. In one case, three blocks of control tissue were also dissected from the frontal lobe.

Tissue preparation

Immediately upon resection in the operating room or after dissection at autopsy, tissue blocks were rinsed in phosphate-buffered saline (PBS) at pH 7.4. They were then immersion-fixed for 6–8 h at 4°C under constant agitation in a mixture of 4% freshly dissolved parformaldehyde and 15% saturated picric acid in 0.15 M phosphate buffer at pH 7.4 (Somogyi and Takagi, 1982) or in 4% paraformaldehyde alone. Following fixation, tissue blocks were pre-treated using a modified antigen-retrieval method based on microwave irradiation as described previously (Loup et al., 1998). Tissue blocks were cryoprotected in 10, 20 and 30% sucrose in PBS over a period of 3–4 days, frozen at −28°C in isopentane, and stored at −80°C. Series of 40 μm thick sections were subsequently cut in a cryostat and collected in ice-cold PBS. These were either processed for immunohistochemistry (see below) or transferred to antifreeze solution and stored at −20°C until use. This procedure allowed up to 12 different specimens to be processed in parallel. Staining for each of the five GABA_A receptor subunits was always carried out on five consecutive sections with an interseries space of 720–800 μm. For histopathological examination, two additional adjacent series of sections were stained for Nissl with cresyl violet and with antibodies against the neuron-specific nuclear protein NeuN (Wolf et al., 1996a). In selected cases, we also used antibodies against glial fibrillary acid protein (GFAP) and an antisemir that recognizes specifically a non-phosphorylated epitope of neurofilament protein (SMI-32) and labels a subpopulation of pyramidal cells (Campbell and Morrison, 1989).

Immunohistochemistry

The following subunit-specific antibodies were used: mouse monoclonal antibodies bd-24 and bd-17 recognizing the human GABA_A receptor α1-subunit and both the β2 and β3-subunits, respectively (Schoch et al., 1985; Ewert et al., 1990), and polyclonal guinea-pig antisera recognizing the α2, α3 and γ2-subunits. The specificity of these antibodies has been extensively documented (Fritschy and Mohler, 1995; Loup et al., 1998; Waldvogel et al., 1999). The dilutions of the subunit-specific antibodies were: α1-subunit (monoclonal antibody bd-24), 0.14 μg/ml; α2-subunit (affinity-purified), 1.3 μg/ml; α3-subunit (crude serum), 1:3000; β2/3-subunit (monoclonal antibody bd-17), 3.8 μg/ml; and γ2-subunit (crude serum), 1:1500. Further, antibodies used were NeuN 1:1000 (MAB377, Chemicon, Temecula, CA), GFAP 1:100 000 (MAB360, Chemicon, Temecula, CA), and SMI-32 1:5000 (Sternberger Monoclonals Inc.; Covance Research Products, Berkeley, CA). Series of free-floating sections were pre-incubated in 1.5% H₂O₂ in PBS for 10 min at room temperature to block endogenous peroxidase activity. They were then washed three times for 10 min in PBS and processed for immunoperoxidase staining (Hsu et al., 1981) as described previously (Loup et al., 1998, 2000).

Data analysis

Sections were analysed with a Zeiss Axioskop 2 (Jena, Germany) equipped for bright-field microscopy. For display, images were digitized using a high-resolution camera (AxioCam; Zeiss, Jena, Germany) with Zeiss camera software (AxioVision version 4.4). Images were modified for contrast only and comparison images were adjusted uniformly (Adobe Photoshop version 7.0; Adobe Systems Incorporated, San José, CA). No other manipulation of images was performed. Illustrations were composed in Adobe Illustrator (version 10.0; Adobe Systems Incorporated, San José, CA).

Densitometric measurements

The intensity of labelling for the GABA_A receptor subunits α1, α2, and α3 was measured by densitometry in sections from controls (n = 4), FLE (n = 4), HS (n = 8), and non-HS cases (n = 10) as described previously (Loup et al., 2000). Optical density (OD) measurements were recorded in the superficial (layers II and III) and deep layers (layers V and VI) of the neocortex. The average OD per section was calculated from measurements in four rectangles with an area of 400 × 200 μm each in the superficial as well as in the deep layers and all measurements were repeated twice in sets of adjacent sections for each patient. In four patients, insufficient tissue was available to perform a complete quantitative analysis of the subunits.

Statistical analysis

Densitometric measurements were analysed for statistical significance using the Kruskal–Wallis test [non-parametric analysis of variance (ANOVA); GraphPad Prism, GraphPad Software, San Diego, CA]. Data were further compared between individual groups (at P < 0.05) with a multiple comparisons test. In the cases where more than one block was available, values were first subjected to statistical analysis to ensure that interblock variations were not significant.

Results

The distribution of the GABA_A receptor subunits α1, α2, α3, β2/3 and γ2 was analysed in neocortical specimens from three different groups of patients with medically intractable focal epilepsy. Tissue obtained at autopsy from patients with no evidence of neurological disease was used for controls as previous data indicated that staining patterns for GABA_A receptor subunits in autopsy and surgical samples are comparable (Loup et al., 2000).

Patient histories and histopathological evaluation

Table 1 provides a summary of the relevant clinical data for each patient. The duration of epilepsy ranged from 4 to 29 years in the FLE group, from 10 to 44 years in the HS group and from 1 to 32 years in the non-HS group. Mean epilepsy duration was 13.4 years in the FLE group, 30.7 years in the...
Cortical GABA_A receptors in human epilepsy

HS group and 10.6 years in the non-HS group. The mean age of onset was 9.2 years in the FLE group, 8.9 years in the HS group and 17.6 years in the non-HS group. In the HS group, but not in the FLE or non-HS groups, an initial precipitating event was documented as described previously (French et al., 1993; Mathern et al., 1995), including febrile convulsions (n = 4), infantile meningitis/encephalitis (n = 2) and neonatal anoxia/ischaemia (n = 1). The overall mean postsurgical follow-up period was 57.3 months. Seizure-free status (class I; Engel, 1987) was achieved for all patients of the HS group, 9 out of 12 patients in the non-HS group and 1 patient of the FLE group.

With respect to the patients with FLE, histopathological examination revealed discrete focal Chaslin’s subpial gliosis (n = 1), leptomeningeal venous angiitis with no abnormalities in the brain parenchyma (n = 1), a low grade tumour (n = 1), and a glial scar (n = 2). In the patients with histopathologically confirmed HS, examination of the anterolateral temporal neocortex showed mild Chaslin’s subpial gliosis (n = 3), gliosis (n = 4) and/or white matter changes. Thus, in two cases, small aggregates of heterotopic neurons were detected in the subcortical white matter. According to Palmini et al. (2004), such abnormalities are classified as type II mild malformations of cortical development (mild MCD II). In contrast, in neocortical grey matter, staining for Nissl, NeuN or SMI-32 revealed a normal cytoarchitecture with no apparent neuronal cell loss (see Fig. 4A and D). The non-HS group consisted of patients with vascular cavernous malformations (n = 3), low grade tumours (n = 8) and a glial scar secondary to cranial trauma (n = 1). All lesions were located in the anterolateral temporal neocortex. In 4 of the 12 patients with non-HS we also found histopathological changes in tissue adjacent to the lesion. In particular, dyslamination and large neurons were observed in two cases, one with a dysmyeloplastic neuroepithelial tumour (DNT) and the other with a ganglioglioma. According to Palmini et al. (2004), the abnormalities described above are consistent with type IB (FCD IB). Neocortical tissue from autopsy controls displayed a normal cytoarchitecture.

GABA_A receptor subtypes in control grey matter

We first examined the distribution of the GABA_A receptor subunits α₁, α₂, α₃, β₂/3 and γ₂ in temporal neocortex at low power magnification (Fig. 1). Adjacent sections were stained for the neuronal marker NeuN to identify laminar borders. All subunit antibodies revealed specific patterns of immunoreactivity. In normal grey matter, the laminar pattern for the subunits α₁, α₂ and α₃ was distinct, whereas the laminar pattern was similar for the subunits β₂/3 and γ₂ (Fig. 1). A comparable organization was also described in rodent brain where the α-subunit variants represent largely distinct subtypes with a specific pharmacological profile while the β₂/3 and γ₂-subunits are common to most GABA_A receptor subtypes (Fritschy and Möhler, 1995). Furthermore, the distribution pattern for the α₁-subunit was nearly identical to that of the β₂/3 and γ₂-subunits, indicating that the α₁-subunit is the most abundant of the α-subunit variants in the human neocortex. Unless otherwise mentioned, the ubiquitously present subunits β₂/3 and γ₂, although analysed, will not be further described.

Figure 2 shows at higher magnification the distinct and specific pattern of laminar distribution in neocortex of each of the α-subunit variants tested. Staining for the α₁-subunit was particularly intense in the lower part of layer III and in layer IV (Fig. 2B). A weaker labelled band corresponding to the upper/mid layer IV in adjacent NeuN and SMI-32-stained sections was often observed (Fig. 2A and B) and was best seen at low power magnification (Fig. 1). For the α₂-subunit, labelling was pronounced in the superficial layers and weak in the deep layers (Figs. 1 and 2C). A transition in labelling intensity generally was apparent in layer IV. Immunoreactivity for the α₃-subunit was most intense in layer II and the upper part of layer III, gradually decreasing...
toward the lower part of layer III. Layer IV was only lightly labelled (Figs. 1 and 2D). The deep layers were moderately labelled. Even at this power of magnification, apical dendrites originating from layers V and VI could be seen to extend toward the pial surface (Fig. 2D). For each subunit, similar patterns of staining were observed in temporal and frontal neocortical tissue of all autopsy cases (data not shown).

At the cellular level, staining for the α2-subunit was present in the neuropil of each layer with the neuronal cell bodies appearing lightly labelled against the background (Fig. 3A). α3-Subunit immunoreactivity was also observed in the neuropil, but additionally in the soma and dendrites of individual neurons, including in pyramidal cells predominantly situated in the lower part of layer III (Fig. 3B). In layers V and VI, a subpopulation of neurons was labelled that displayed the typical morphology of pyramidal cells with a few basal dendrites and long apical dendrites coursing toward the superficial layers (Fig. 3C). Figure 3D shows a high magnification image of a layer V pyramidal cell immunoreactive for the α3-subunit. For both the α2 and α3-subunits, intense immunoreactivity was also detected on the axon initial segment of pyramidal cells, as shown previously (Loup et al., 1998). Staining for the α1-subunit, and less prominently for the β2/3 and γ2-subunits, was only not seen in the neuropil, but also in numerous non-pyramidal cells. In particular layer II and the upper part of layer III displayed a high density of intensely stained interneurons with somata of small size and several, often radially oriented, dendrites (Fig. 3E).

GABA_A receptor subtypes in the grey matter of patients with focal epilepsy

Neocortical tissue from patients with FLE, HS or non-HS was analysed for changes in GABA_A receptor subunit immunoreactivity. In the patients with a circumscribed lesion in the neocortex (see Table 1), the tissue samples used for study were from the periphery of the lesion. Two major observations were made. First, in all three groups the staining pattern for the subunits α1 and α2, as well as β2/3 and γ2, was largely similar to that of controls in terms of laminar distribution and intensity (Fig. 4B, C and E). Secondly, a subset of patients (10/26) was found to exhibit markedly decreased α3-subunit staining in the superficial layers, whereas the deep layers appeared unchanged and thus provided an internal control within each section for each case (Figs. 4F and 5). In the patients with reduced α3-subunit staining, no apparent neuronal cell loss was observed in adjacent sections stained for SMI-32 or NeuN (Fig. 4A and D). The data for the α3-subunit in the superficial neocortical layers for each patient are summarized in Table 1.

In the group of patients with FLE (n = 5), no changes in α3-subunit immunoreactivity were observed as compared to controls. In the HS group (n = 9), α3-subunit immunoreactivity was only lightly labelled (Figs. 1 and 2D). The deep layers were moderately labelled. Even at this power of magnification, apical dendrites originating from layers V and VI could be seen to extend toward the pial surface (Fig. 2D). For each subunit, similar patterns of staining were observed in temporal and frontal neocortical tissue of all autopsy cases (data not shown).
immunoreactivity was unchanged in three and decreased in five cases. In the remaining case, regions of unchanged and decreased \(\alpha_3\)-subunit staining were observed in \(\alpha_3\)-subunit staining in the superficial layers in two different samples while no alterations were observed in \(\alpha_3\)-subunit staining in the deep layers. In the non-HS group \((n = 12)\), \(\alpha_3\)-subunit labelling was unchanged in seven cases, decreased in the superficial layers in four cases, and could not be determined in one case. Fig. 5 shows low power images of the laminar distribution pattern of the \(\alpha_3\)-subunit from six different cases (five HS, one non-HS), three of which had no changes and three of which had decreased \(\alpha_3\)-subunit staining in the superficial neocortical layers.

Semiquantitative densitometric analysis was performed to assess differences in staining intensity between the control, FLE, HS and non-HS groups for the subunits \(\alpha_1\), \(\alpha_2\) and \(\alpha_3\) in the superficial and the deep layers of temporal or frontal neocortical tissue (Fig. 6). The following observations were made: (i) no significant differences in OD were found for the \(\alpha_1\) and \(\alpha_2\)-subunits in the superficial or the deep layers between the different groups of patients (Fig. 6A–D). (ii) Differences in OD for the \(\alpha_3\)-subunit were observed in the superficial layers of a subset of patients in both the HS and the non-HS groups (Fig. 6E). When compared to the FLE group, \(\alpha_3\)-subunit OD was significantly decreased in both the HS and the non-HS groups \((P < 0.01\) and \(P < 0.05\), respectively).
Comparison within the HS group and within the non-HS group showed that α3-subunit OD was significantly decreased in a subset of patients (P < 0.0001 and P < 0.0001, respectively). (iii) No significant difference in OD was found for the α3-subunit in the deep layers for all patients (Fig. 6F).

At the cellular level, sections stained for the subunits α1 and α2 revealed similar patterns in all specimens when compared to controls (data not shown). For the α3-subunit, Fig. 7A shows a section from a case with an unchanged pattern of staining similar to what was seen in control tissue. In the HS and non-HS patients with changes in α3-subunit immunoreactivity in the superficial neocortical layers, a striking decrease in staining was present throughout layers I, II and III (Fig. 7B–D). Moreover, in layer II only, we observed pyramidal cells immunopositive for the α3-subunit, which had apical dendrites extending into layer I (Fig. 7C and D). These neurons possessed numerous long dendrites, which at times formed an intricate predominantly horizontal network with neighbouring layer II neurons (Fig. 7C). Some cells had a prominently labelled soma (Fig. 7D). Changes at the cellular level as depicted in Fig. 7 were seen to a variable degree in the temporal neocortex of all patients with reduced α3-subunit staining.

Intraoperative ECoG, changes in α3-containing GABA_A receptors and histopathology

ECoG was performed during surgery in 18 of 26 patients and results were analysed in a semiquantitative manner as described in Material and methods. As can be seen in Table 1, no consistent correlation was found between the degree of spiking activity recorded before resection and the changes in α3-subunit staining or the histopathology. In particular, areas with high spiking activity (+++ and ++++) exhibited either unchanged or decreased α3-subunit expression. The post-resection ECoG recordings showed that no or only little residual spiking was present at the border of the resection except in one FLE patient with rhythmic discharges in the contralateral frontal neocortex.
Figure 5 GABA_A receptor α3-subunit immunoreactivity in the temporal neocortex from six TLE patients. The colour-coding indicates OD of staining using a normalized scale with the strongest signal in white and no signal (background) in dark blue. (A, C and E) α3-subunit immunoreactivity in three patients with HS showing no change in the laminar distribution of this subunit. (B, D and F) In two other patients with HS (B and D) and one with non-HS (F), staining for the α3-subunit is decreased in the superficial layers and unchanged in the deep layers. Scale bar: 1 mm.

Discussion
Our first principal finding is that in the normal human neocortex the expression of five of the major GABA_A receptor subunits (α1, α2, α3, β2/3 and γ2) displayed remarkable laminar and neuronal specificity. Moreover, the regional distribution of the GABA_A receptor subunits was similar across all the neocortical regions examined in the temporal and frontal lobes. Second, in a subset of patients with TLE we observed a decrease in α3-subunit staining in the superficial neocortical layers, usually accompanied by histopathological changes. In contrast, the distribution and the intensity of labelling of the subunits α1, α2, β2/3 and γ2 were unchanged in patients with focal epilepsy.

Methodological considerations
The feasibility of this study depended on the utilization of high affinity antibodies and the quality and processing of the tissue. We verified the specificity of the subunit-specific antisera in human brain tissue in previous studies with competition experiments, by replacing primary antibodies with non-immune serum and in western blots (Loup et al., 1998; Waldvogel et al., 1999). Moreover, to achieve high specificity of staining with a low background, we used an antigen-retrieval microwave procedure adapted to human brain tissue (Loup et al., 1998).

A number of potential pitfalls must be considered in the interpretation of our findings. (i) Variability, because tissue samples originated from different epilepsy centres. However, tissue processing was performed according to a common protocol (Loup et al., 1998, 2000) and the specific reduction in α3-subunit staining was found in tissue samples from all three centres. (ii) A sampling problem, in that areas compared between different patients were in fact not homologous. This is rather unlikely as the location of the resected neocortical areas was carefully documented and the distribution of the subunits α1 and α2, which served as a reference, was unchanged across samples. (iii) Effects of confounding biographical/clinical data, in particular differences in pharmacotherapy or the occurrence of presurgical seizures (Bouvard et al., 2005). Thorough review of the clinical data from each patient failed to identify major discrepancies among patients. Furthermore, it is unlikely that the changes in α3-subunit expression are secondary to drug treatment for the following reasons: a decrease in α3-subunit expression was observed in tissue both from patients taking GABAergic drugs and from patients not taking GABAergic drugs. In other words, there was no correlation. Also, at least four patients who were not treated with GABAergic drugs at the time of surgery and with no history of prior exposure nevertheless exhibited decreased α3-subunit staining. Moreover, in patients in whom α3-subunit expression was decreased in temporal neocortex, the expression in the entorhinal cortex was unchanged (F. Loup, unpublished data), whereas all five subunits studied including the α3-subunit were differentially altered in the hippocampus (Loup et al., 2000). (iv) Staining artefacts. This possibility can be ruled out based on our uniform processing in parallel of the various tissue samples. In addition, immunohistochemical staining in the cases with decreased α3-subunit labeling was repeated several times and, finally, staining in the deep layers was unchanged, thus providing an intrasection control.

GABA_A receptor subtype expression in normal grey matter
Among the three GABA_A receptor subtypes identified in our study, the α1-subtype was most abundant, with highest staining in lower layer III and layer IV, followed by the α2 and the α3-subtypes. This is in line with the results of previous autoradiographic GABA_A receptor binding studies (Young and Kuhar, 1979; Zezula et al., 1988) reporting high densities of benzodiazepine receptor sites, especially in layers III and IV. Using in situ hybridization for six GABA_A receptor subunit mRNAs (α1, α2, α5, β1, β2 and γ2), Akbarian et al. (1995) found three principal patterns of laminar expression in normal human prefrontal cortex, with the α1-subtype dominating. The laminar distribution pattern that they reported for the α1, α2, β2 and γ2-subunit mRNAs is largely
similar to that described in the present immunohistochemical study. Moreover, the GABA_A receptor subunits α1, β2/3 and γ2 show a similar laminar distribution in the human visual cortex with immunoreactivity greatest in layer IV (Hendry et al., 1994). Finally, electrophysiological data from a study in human temporal cortical neurons demonstrated a benzodiazepine sensitivity profile consistent with a preponderance of α1-subunit expression (Gibbs et al., 1996).

Fig. 6 Densitometric measurements (mean ± SD) in four controls, 4 FLE, 8 HS and 10 non-HS patients showing that a subset exhibits decreased α3-subunit staining in the superficial neocortical layers (13–18, 26–29). Sets of three immediately adjacent sections stained for the subunits α1 (A and B), α2 (C and D) and α3 (E and F) were used. OD measurements were made in layers II and III (A, C and E) and in layers V and VI (B, D and F) of the same section. The numbers 1–29 indicated in A refer to each of the patients listed in Table 1. One exception is number 13 (marked with an x). In tissue from this patient, densitometric measurements of α3-subunit staining in the superficial layers showed a lack of change in one sample and decreased staining in the other (E, xx). In contrast, all the other densitometric measurements in this patient were uniform between blocks as reflected by the low SDs (A–D and F).

Fig. 7 Variability of α3-subunit immunoreactivity at the cellular level in the superficial neocortical layers in TLE specimens with decreased α3-subunit staining (B–D) versus a TLE specimen with unchanged labelling (A). (A) α3-Subunit immunoreactivity showing strong neuropil staining in layer II and weaker staining in the upper part of layer III. In (B), α3-subunit labelling is decreased throughout the superficial layers. (C) Section showing a layer II pyramidal cell with an extensive dendritic arborization restricted to layers I and II. (D) Section showing a large pyramidal cell also located in layer II revealed by α3-subunit immunoreactivity. Scale bar: 100 μm.
To our knowledge, the present study provides the first description of α3-subunit immunoreactivity in the human neocortex, revealing a remarkably specific laminar distribution pattern. This subunit is especially interesting because, in contrast to the other subunits, its expression differs from that described in the rodent brain (Fritschy and Möhler, 1995; Pirker et al., 2000). In rodent neocortex, α3-subunit expression is mainly located in the deep layers, while in the human neocortical frontal and temporal regions examined, α3-subunit staining was also pronounced in the superficial layers, especially in layer II. Our results further demonstrate a cell-specific distribution of the five major GABA_A receptor subunits. The α1 together with the β2/3 and the γ2-subunits were localized not only in pyramidal cells but also in numerous small interneurons, especially in the superficial layers. Layer II and the upper part of layer III of the human temporal neocortex contain smaller and a higher density of GABA-positive somata than the other layers (Kisvárday et al., 1990). In contrast, the α2 and α3-subunits were localized solely in pyramidal cells, most prominently at the axon initial segment (Loup et al., 1998; Volk et al., 2002).

Altered GABA_A receptor subtype expression in the grey matter of patients with focal epilepsy

We found a selective reduction of the α3-subunit in the neocortex of a subset of TLE patients in the absence of a change of the α1, α2, β2/3 and γ2-subunits. Data from animal studies indicate, however, that functional α3-containing GABA_A receptors generally co-assemble with β and γ2-subunits (Sieghart and Sperk, 2002; Fritschy and Brüning, 2003). The reason that we did not detect an associated decrease in β2/3 and γ2-subunit labelling probably relates to the ubiquitous distribution of these subunits. The β and γ2-subunits are included in the vast majority of GABA_A receptors, most frequently in combination with the α1 or α2-subunit. Thus, a decrease in the fraction of β and γ2-subunits co-expressed with the α3-subunit, which in rodent brain constitutes only 10–20% of the total number of GABA_A receptors (Sieghart and Sperk, 2002; Fritschy and Brüning, 2003), would result in a change too low to be detected by immunohistochemical methods.

Among all known subunits the α1 is the only one previously analysed immunohistochemically in the temporal neocortex of patients with pharmacoresistant focal epilepsy (Wolf et al., 1994, 1996b). In their first study where the primary focus was the hippocampal formation, Wolf et al. (1994) used the temporal neocortex as a reference and reported no changes in α1-subunit GABA_A receptor immunoreactivity, which is confirmed by our data. Autoradiographic analysis of binding at GABA_A receptors or at the benzodiazepine–GABA_A receptor complex in the temporal neocortex of patients with medically refractory focal epilepsy has provided conflicting findings. Thus Zilles et al. (1999) using ³H-muscimol reported a downregulation of GABA_A receptor density in four out of nine cases with non-HS and variable upregulation in the remaining cases. In TLE patients with HS, Olsen et al. (1992) found no significant difference in flumazenil binding between epileptic temporal neocortex and control tissue, whereas Burdette et al. (1995) reported a significant increase in flumazenil binding in layers V and VI of epileptic temporal neocortex. Taken together these studies show non-uniform changes in GABA_A receptor binding in tissue from TLE patients. Similarly, imaging studies using ¹¹C-flumazenil in patients with refractory focal epilepsy due to diverse pathologies have reported not only focal decreases but also focal increases of flumazenil binding either in temporal or extratemporal neocortex (Theodore, 2002; Koepp and Woermann, 2005). Until subtype-specific ligands become available it will not be possible to determine how the changes in α3-subunit expression observed in the present work relate to the changes described in autoradiography and PET studies.

In our study, the non-HS group consisted of patients with a focal lesion located in the anterolateral temporal neocortex. When we examined the neocortex adjacent to the lesion, we observed that it was histologically normal in 8 of the 12 cases where we also did not find any changes in α3-subunit staining compared to controls. In the other four patients with decreased α3-subunit expression, we found histopathological changes including gliosis and type IB FCD. This type of mild MCD was present in one patient with a DNT and one patient with a ganglioglioma. Both types of tumours may be associated with surrounding dysplastic cortical regions as described previously (Prayson et al., 1993; Daumas-Duport et al., 1999; Palmini et al., 2004). Wolf et al. (1996b) reported decreases as well as increases in α1-subunit immunoreactivity in the perilesional tissue in a subset of patients with neocortical lesions. We did not find alterations in α1-subunit staining in our study, but overall these results show that GABA_A receptor changes can occur in the vicinity of focal lesions.

The HS group comprised nine patients, three with no change in α3-subunit labelling, five with decreased labelling and one with a decrease in one of two tissue samples. Mild Chaslin’s subpial gliosis was detected in two of the patients with no change in α3-subunit labelling and in the patient where there was reduced staining in one of the two samples. In contrast, in four of the five cases with decreased α3-subunit staining, we observed gliosis and/or white matter changes, two of whom exhibited type II mild MCD (Palmini et al., 2004). Thus, decreased α3-subunit expression in patients with HS or with non-HS was associated in 8 out of 10 patients with histopathological changes, in particular mild forms of MCD. We did not, however, observe neuronal loss in TLE specimens, in agreement with previous studies (Babb et al., 1984; Bothwell et al., 2001). These findings suggest that the reduction in α3-subunit staining is related primarily to a downregulation of this subunit in pyramidal cells rather than to a loss of neurons expressing this subunit.
Furthermore, decreased α3-subunit expression was not accompanied by a reduction in the α1 or α2-subunits, which would be expected were the changes a result of extensive neuronal loss.

We also studied five patients with FLE, where we did not find any changes in GABA_A receptor subunit staining. Whether this lack of change reflects the small sample size, the type of pathology (absence of a circumscribed lesion except in one case) or other factors remains unclear. It is however interesting to note that the laminar distribution and intensity of GABA_A receptor subunits was basically similar to that in the autopsy specimens and TLE samples.

In the patients with altered α3-subunit expression, the laminar pattern was remarkably stereotyped with a lack of change in deep layers and a marked decrease in staining in superficial layers. At the cellular level it is not possible to determine whether the more darkly stained, and therefore visible, pyramidal cells were the last cells to express the α3-subunit or whether these neurons expressed this subunit de novo. Nevertheless, the selective localization in layer II of intensely stained neurons with an extensive dendritic arborization confined to layers I and II suggests a reorganization of the α3-subtype in these layers. A recent study using complementary DNA microarrays and immunostaining reported a pattern of persistent gene activation in epileptic neocortex of patients with focal epilepsy mainly in layers II and III (Rakhade et al., 2005). As the superficial layers are primarily involved in processing activity from other cortical areas (Jones, 1984) and electrophysiological studies have shown the critical role of layers II and III in the generation of synchronous population events in human epileptic neocortex (Köhling et al., 1999), downregulation of α3-containing GABA_A receptors in the superficial layers may contribute to decreased functional inhibition.

Other GABA_A receptor subunits, for which antibodies effective in human tissue do not yet exist, might be upregulated and may thus compensate for a reduction in α3-subunit expression. However, a recent study using transcriptome profiling in human epileptic neocortex reported a prominent downregulation of the α5-subunit gene and other GABA system transcripts in both the presynaptic and the post-synaptic compartments in spiking samples (Arion et al., 2006). Further, functional and morphological alterations in GABAergic circuits in the neocortex of TLE patients have been described previously (DeFelipe, 1999; Avoli et al., 2005). In particular, the group of DeFelipe found patterns of decreased immunoreactivity for parvalbumin (PV) and glutamate decarboxylase in human epileptogenic neocortex (DeFelipe et al., 1993, 1994; Marco et al., 1996). The most important change was a focal loss of PV-positive chandelier cells (among other interneurons), which are thought to be the most powerful cortical inhibitory cells. Using quantitative electron microscopy, the same group found a loss of inhibitory synapses in the regions with marked decrease in staining for PV (Marco and DeFelipe, 1997). Interestingly, the changes in synaptic density in their study were most pronounced in the superficial layers, where we observed downregulation of α3-containing GABA_A receptors. Taken together, these results suggest a prominent reorganization of the GABAergic circuitry, which could contribute to the genesis or the maintenance of seizure activity in human focal epilepsy.

Acknowledgements

The authors are grateful to Franziska Parpan and Corinne Sidler for excellent technical assistance. The authors thank Drs N. de Tribolet, J.-G. Villemure and A. L. Benabid for providing surgical specimens and Dr A. Aguzzi for supplying post-mortem tissue. The authors also thank Dr H. Möhler for his generous support, Dr C. Marescaux for fruitful discussions during the initial phase of the project, Drs M. Seeck and T. Landis for help with clinical data collection and Dr U. Gerber for comments on the manuscript. This work was funded by the Swiss National Science Foundation and the NCCR on Neural Plasticity and Repair.

References

DeFelipe J, Huntley GW, del Río MR, Sola RG, Morrison JH. Micr0zonal decreases in the immunostaining for non-NMDA ionotropic excitatory amino acid receptor subunits GluR 2/3 and GluR 3/6/7 in the human epileptogenic neocortex. Brain Res 1994; 657: 150–8.

