Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-β

Mark L. Cohen,1,2 Chae Kim,1 Tracy Haldiman,1 Mohamed ElHag,1 Prachi Mehndiratta,3 Termsarasab Pichet,3 Frances Lissemore,3 Michelle Shea,3 Yvonne Cohen,1,2 Wei Chen,1,2 Janis Blevins,1,2 Brian S. Appleby,3,4 Krystyna Surewicz,5 Witold K. Surewicz,5 Martha Sajatovic,3,4 Curtis Tatsuoka,3 Shulin Zhang,1 Ping Mayo,6 Mariusz Butkiewicz,6 Jonathan L. Haines,6 Alan J. Lerner3 and Jiri G. Safar1,2,3

Genetic and environmental factors that increase the risk of late-onset Alzheimer disease are now well recognized but the cause of variable progression rates and phenotypes of sporadic Alzheimer’s disease is largely unknown. We aimed to investigate the relationship between diverse structural assemblies of amyloid-β and rates of clinical decline in Alzheimer’s disease. Using novel biophysical methods, we analysed levels, particle size, and conformational characteristics of amyloid-β in the posterior cingulate cortex, hippocampus and cerebellum of 48 cases of Alzheimer’s disease with distinctly different disease durations, and correlated the data with APOE gene polymorphism. In both hippocampus and posterior cingulate cortex we identified an extensive array of distinct amyloid-β42 particles that differ in size, display of N-terminal and C-terminal domains, and conformational stability. In contrast, amyloid-β40 present at low levels did not form a major particle with discernible size, and both N-terminal and C-terminal domains were largely exposed. Rapidly progressive Alzheimer’s disease that is associated with a low frequency of APOE e4 allele demonstrates considerably expanded conformational heterogeneity of amyloid-β42, with higher levels of distinctly structured amyloid-β42 particles composed of 30–100 monomers, and fewer particles composed of <30 monomers. The link between rapid clinical decline and levels of amyloid-β42 with distinct structural characteristics suggests that different conformers may play an important role in the pathogenesis of distinct Alzheimer’s disease phenotypes. These findings indicate that Alzheimer’s disease exhibits a wide spectrum of amyloid-β42 structural states and imply the existence of prion-like conformational strains.

1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
4 Department of Psychiatry, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
5 Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
6 Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA

Correspondence to: Jiri G. Safar,
Department of Pathology,
Case Western Reserve University,
2085 Adelbert Rd,
Cleveland,
OH.
E-mail: jiri.safar@case.edu

Keywords: Alzheimer; β-amyloid; structure; progression rate
Introduction

The genetic and environmental factors linked to the increased risk of developing late-onset Alzheimer disease are well established (Selkoe, 2011; Schellenberg and Montine, 2012). We recently described a novel subgroup of patients with rapidly progressive dementia mimicking prion diseases which, after exhaustive neuropathological investigation and prion protein gene sequencing, was concluded to be rapidly progressive Alzheimer’s disease (Chitravas et al., 2011). Data from all of the cases with rapidly progressive Alzheimer’s disease collected independently at prion centres in Germany, Japan, Spain and France have uniformly confirmed the presence of differentiating clinical characteristics and a low frequency of e4 alleles in the APOE gene, while the autosomal dominant history of dementia or comorbidity was absent (Schmidt et al., 2010, 2011, 2012, 2013; Chitravas et al., 2011). The pathogenetic mechanisms leading to these variable progression rates and phenotypes of Alzheimer’s disease are unknown (Schellenberg and Montine, 2012).

Extensive analysis of ageing brain samples indicates that the pathological processes underlying Alzheimer’s disease begin early in isolated anatomical structures of the brain, and then spread through neuronal projections (Braak and Del Tredici, 2013). In transgenic mice models of Alzheimer’s disease and tauopathy, this process can be accelerated by intracerebral injection of preformed misfolded amyloid-β or tau. Moreover, studies show that different structural conformers of misfolded proteins have varying potency to accelerate the pathology (Kane et al., 2000; Guo and Lee, 2013). The data suggest a prion-like intercellular propagation of misfolding; and as synthetic amyloid-β is significantly less active in this ‘seeding’ effect than amyloid-β of brain origin, the data also imply a conformational and biological plasticity, which is the fundamental basis for vastly differing phenotypes (strains) of prion diseases (Meyer-Luehmann et al., 2006; Prusiner, 2012, 2013; Safar, 2012a, b). These findings have raised some questions, specifically, whether the structure of different conformers and assemblies of brain amyloid-β contribute to varying progression rates of the Alzheimer’s disease, and whether subtle differences in the conformation of amyloid-β may be responsible for the distinct disease phenotypes (Kabir and Safar, 2014). Therefore, structural characterization and differentiation of amyloid-β spectrum in the wide range of phenotypes and progression rates of Alzheimer’s disease should provide clues into the pathogenetic role of amyloid-β, and specifically different conformers (assemblies) in the amyloid cascade. Identification of differential and well-characterized mechanistic determinants of Alzheimer’s disease variants could help inform future treatments that are customized and focused on relevant pathologic factors.

Using advanced conformation-sensitive techniques (Safar et al., 1998; Kim et al., 2011, 2012; Safar, 2012a, b), we investigated amyloid-β42 and amyloid-β40 peptides in the brains of Alzheimer’s disease cases with variable disease progression tempo. Our findings described below demonstrate the remarkable structural diversity of brain amyloid-β42—a characteristic that is not present in amyloid-β40—and establish a link between particular conformers of amyloid-β42 and the fast progression rate of Alzheimer’s disease.

Materials and methods

Ethics statement

All procedures were performed under protocols approved by the Institutional Review Board at Case Western Reserve University and University Hospitals Case Medical Centre in Cleveland, OH. In all cases, written informed consent for research was obtained from the patient or legal guardian, and the material used had appropriate ethical approval for use in this project. All patients’ data and samples were coded and handled according to NIH guidelines to protect patients’ identities.

Patients and clinical evaluations

The rapidly progressive Alzheimer’s disease cohort was randomly selected from a group of 276 patients with a definitive diagnosis of rapidly progressive sporadic Alzheimer’s disease who were referred to the National Prion Disease Pathology Surveillance Centre (NPDPSC) from 2002 to 2012 with a rapidly progressive dementia and a differential diagnosis of prion disease. In all cases, we were able to exclude familial or sporadic prion disease after sequencing the PRNP gene, conducting neuropathology and immunohistochemistry for the pathogenic prion protein (PrPSc), and molecular typing of PrPSc by western blots. Case records accumulated with standard NPDPSC protocol by trained personnel were analysed retrospectively. These records included medical charts, semi-structured telephone interviews of the prion surveillance centre personnel with patients and caregivers at the time of referral, EEG, MRI and laboratory results (Puoti et al., 2012; Schmidt et al., 2012). The criteria for inclusion into the rapidly progressive Alzheimer’s disease cohort were: (i) initial referral to NPDPSC and classification as possible prion disease due to the clinical appearance in accordance with the consensus official criteria valid at the time of referral (Geschwind et al., 2008; Puoti et al., 2012; Schmidt et al., 2012); (ii) decline in more than six Mini-Mental State Examination (MMSE) points per year and/or death within 3 years of initial neurological diagnosis of atypical dementia (Geschwind et al., 2008; McKhann et al., 2011; Schmidt et al., 2012); (iii) absent autosomal dominant pattern of the dementia; (iv) absent pathogenic mutations
in the human prion protein (PrP) gene (PRNP); (v) neuropathology and immunohistochemistry of tau proteins and amyloid-β with unequivocal classification as sporadic Alzheimer’s disease; (vi) absence of neuropathologic comorbidity; and (vii) distribution of means and proportions of demographic data within 95% confidence interval of the whole group, resulting in no difference in means and proportions between the randomly selected and all Alzheimer’s disease cases in the NPDPC database. Because there are no definite clinical criteria for rapidly progressive Alzheimer’s disease (Schmidt et al., 2010, 2011, 2012), and to prevent contamination of this cohort with outliers, for further studies we selected cases within the normal distribution interval of disease duration calculated as UQ + 1.5*IQR, where UQ is upper quartile, and IQR is inter-quartile range.

The cases with slowly progressive Alzheimer’s disease were defined as those diagnosed between 2001 and 2013 at the Brain Health and Memory Centre of the Neurological Institute at University Hospitals Case Medical Centre, and brains were collected in the repository of the Department of Pathology at Case Western Reserve University (Tatsuoka et al., 2013; Chien et al., 2014). The criteria for inclusion in the slowly progressive Alzheimer’s disease cohort were: (i) unequivocal clinical diagnosis of Alzheimer’s disease (McKhann et al., 2011); (ii) absent autosomal dominant pattern of dementia; (iii) unequivocal classification as Alzheimer’s disease after detailed neuropathology and immunohistochemistry of tau proteins and amyloid-β; (iv) absence of concurrent clinical or neuropathologic comorbidity; and (v) the distribution of means and proportions of demographic data within 95% confidence interval of late-onset cases accumulated in National Alzheimer’s Coordinating Centre (NACC) at the University of Washington between September 2005 and February 2013 (Beekly et al., 2007). In all cases, the clinical diagnosis of probable slowly progressive and rapidly progressive Alzheimer’s disease was confirmed by diagnostic histopathology (McKhann et al., 2011). For comparison of disease durations, we used late onset autopsy-proven Alzheimer’s disease cases submitted to the NACC database at the University of Washington (Beekly et al., 2007). The control non-Alzheimer’s disease group consisted of age- and sex-matched patients whose primary cause of death was lymphoma, carcinomatosis, or autoimmune disorder and the neuropathology ruled out prion disease, Alzheimer’s disease, or other neurodegenerative disorder (Supplementary Table 2).

Sequencing of PRNP, APOE, APP, PSEN1 and PSEN2 genes

DNA was extracted from frozen brain tissues in all cases, and genotypic analysis of the APOE gene polymorphism and the PRNP coding region was performed as described (Parchi et al., 1996, 2000; Safar et al., 2005).

Illumina sequencing

The coding regions of APP, PSEN1 and PSEN2 were analysed using a TruSeq Custom Amplicon kit generated using DesignStudio (www.Illumina.com). Parameters were selected for 425 base pair amplicons and the design was successful for APP and PSEN1 but failed for exons 4 and 5 in PSEN1; for these exons we used Sanger sequencing. Paired end sequencing using a v3 600 cycle kit was performed on an Illumina MiSeq instrument (Illumina) with an output of 50 million paired end reads. All sequence reads for all genotypic samples were aligned to the human genome reference version 19. Genotypes of each base position were called with a minimum 20-times coverage. Minor and major allele frequencies were calculated for every variant of the sample population, and we identified intronic and exonic regions. Each variant was cross-referenced with the Alzheimer Disease and Frontotemporal Dementia Mutation Database (Cruts et al., 2012) and the NHLBI Exome Sequencing Project (ESP) Exome Variant Server (EVs) (http://evs.gs.washington.edu/EVS/) for SNP occurrences in the genes APP, PSEN1 and PSEN2.

Sanger sequencing

Screening for exons 4 and 5 in PSEN1 were carried out by PCR followed by Sanger dideoxy sequencing (Sanger et al., 1977). Exon-specific oligonucleotide primers flanking the two regions of interest were designed using Primer3 software (http://frodo.wi.mit.edu/) and obtained from IDT (www.idtdna.com). PCR amplification was performed with following exon specific primers: PSEN1_E04_F_aaccgttaccttgattctgctgag, PSEN1_E04_R_agccacactggctttgagaata, PSEN1_E05_F_gttggaagctgtggggtgggttggttggg, PSEN1_E05_R_acccacacataagaaaaacgcgct. PCR products were purified from unincorporated primers and dNTPs using shrimp alkaline phosphatase and bi-directional DNA sequencing was performed using BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and pigtail primers. Unincorporated nucleotides and dye-labelled chain terminators were removed using Agencourt CleanSEQ kit (http://www.agencourt.com/documents/products/cleanseq/Agencourt_CleanSEQ_Protocol.pdf). Sequencing products were size fractionated by electrophoresis and detected in a 3730xl DNA Analyzer (Applied Biosystems). Sequencing analysis was performed using Mutation Surveyor Version 4.0.7 (Softgenetics). The data were compared to reference PSEN1 sequence: NG_007386.2 GI:213511787.

Brain sampling

Coronal sections of human brain tissues were obtained at autopsy and stored at −80°C. Three 200–350 mg cuts of hippocampal, precuneus/posterior cingulate (PPC) cortex (Brodmann areas 23 and 31), and cerebellum were taken from each brain and used for molecular analyses. Slices of brain tissue weighing 200–350 mg were homogenized to a final 15% (w/v) concentration by three 75 s cycles with Mini-beadbeater 16 cell Disruptor (Biospec) in Tris-buffered saline (TBS), pH 7.4, containing complete protease inhibitor cocktail (Roche Applied Science). Pre-adsorption was carried out with 0.6 ml of 10% Sarkosyl and 1.5 mg magnetic beads coated with Protein A/G mixture or Streptavidin (Pierce) at 5°C for 1 h. The Sarkosyl was adjusted to a final 1% (v/v), the sample was re-homogenized by two cycles of 75 s, clarified at 50000 × g for 5 min, and aliquots of the supernatant were stored at −80°C for future analysis.

Western blots

SDS PAGE and western blots for amyloid-β were performed as described (Sherman and Lesne, 2011). Alternatively, the
transblots were denatured with a saturated vapour of 96% formic acid in an airtight chamber for 40 min (Safar et al., 1993b). The PVDF filters were developed with 0.13 μg/ml of biotinylated mAb 6E10 (epitope human amyloid-β residues 1–16, Covance), or 0.2 μg/ml of peroxidase-labelled mAb 4G8 (epitope human amyloid-β residues 17–24, Covance). The denaturation profile of western blots was performed with ImageJ software.

Conformation-dependent immunoassay of amyloid-β40 and amyloid-β42

The conformation-dependent immunoassay (CDI) for amyloid-β40 and amyloid-β42 is based on principles we developed for the measurement and characterization of prions (Supplementary Fig. 2A) (Safar et al., 1998, 2002, 2005, 2008; Bellon et al., 2003; McCutcheon et al., 2005; Thackray et al., 2007; Choi et al., 2011a, b; Kim et al., 2011, 2012). The measurement of both amyloid-β40 and amyloid-β42 in native and denatured states was performed with amplified luminescence proximity homogeneous assay (AlphaLISA® technology platform, Perkin Elmer). Briefly, for detection of amyloid-β42 and amyloid-β40, we used the donor and acceptor beads coated with mAb 92E1 specific for N-terminus (epitope human amyloid-β residues 10–17), and mAb specific for either C-terminus of amyloid-β42 (12F4), or C-terminus of amyloid-β40, respectively (Perkin Elmer). The 96-well half-area white plates (Perkin Elmer) were first filled with 20 μl per well of 12.5 μg/ml of Acceptor beads and 1.25 nM biotinylated mAb. The thawed samples were sonicated with three 5 s cycles using Misonix Sonicator beads and 1.25 nM biotinylated mAb. The thawed samples were imediately onto the plate, and incubated at room temperature. The fluorescence signals were measured by the multi-mode microplate reader PHERAstar Plus (BMG LabTech), by using the ‘AlphaScreen’ PHERAstar Plus software. Concentrations of the samples were calculated from the signal of denatured sample and standard dilution curve of amyloid-β40 and amyloid-β42 peptides, and are expressed in ng/ml of the original 10% brain homogenate. The ratio of denatured/native (D/N) signal is proportional to the concentration of N- and C-terminal epitopes that are hidden in native state due to the formation of the polymeric assemblies of misfolded proteins (Safar et al., 1998; Kim et al., 2011, 2012; Haldiman et al., 2013).

Conformational stability assay of amyloid-β42

The dissociation and denaturation of human amyloid-β42 was performed as described previously for prions (Supplementary Fig. 2B) (Safar et al., 1998; Kim et al., 2011, 2012; Haldiman et al., 2013), with several modifications. The 15 μl aliquots of 10% brain homogenate in 15 tubes were treated with increasing concentrations of 8 M Gdn HCl in 0.25 M or 0.5 M increments. After 10 min incubation at 80 °C, individual samples were rapidly diluted with assay buffer (Perkin Elmer) containing diminishing concentrations of 8 M Gdn HCl, so that the final concentration in all samples was 2.0 M. The individual 5 μl aliquots were developed according to the AlphaLISA protocol with the final 0.2 M Gdn HCl in reaction mixture. The raw fluorescence signal was converted into the apparent fractional change of unfolding (Fapp) as follows: F = (TRFobs – TRFf) / (TRF0 – TRFf), where TRFobs is the observed TRF value, and TRF0 and TRFf are the TRF values for native and unfolded forms, respectively, at the given Gdn HCl concentration (Safar et al., 1993a; Kim et al., 2011, 2012; Haldiman et al., 2013). To determine the difference in stability of amyloid-β42 between individual samples, the values of individual fractional change were subtracted (ΔFapp = Fapp1 – Fapp2) and then fitted with a Gaussian model to estimate the proportion and average stability of differential conformers (Kim et al., 2011, 2012).

Separation of amyloid-β particles by sedimentation velocity in sucrose gradient

Sucrose gradient sedimentation velocity separation was performed as described previously (Kim et al., 2012; Haldiman et al., 2013; Mays et al., 2014). These conditions correspond to the adjusted proportionality constant k = 58.7 rad/s and angular velocity ω = 5236 rad/s. Observed sedimentation coefficients Sobs were calculated from the formula Sobs = k/(ω²t), where t is the centrifugation time. The S20w values for given angular velocity and sucrose density and viscosity were calculated as described (Prusiner et al., 1978; Steensgaard et al., 1992; Kim et al., 2012). Alternatively, to estimate the sedimentation profiles in the gradient, we used the sedimented distance and particle density 1.35 g/ml (Wille and Prusiner, 1999) in standard plots of so t for sucrose gradients provided by the rotor manufacturer (Beckman). The third approach to estimate the S values in the upper layers of sucrose gradient was calibration with bovine serum albumin (BSA, S = 4.4, MW = 67 kDa), alcohol dehydrogenase (ADH, S = 7.9, MW = 150 kDa), thyroglobulin monomer (TG, S = 12.0, MW = 335 kDa), and apoferritin (AF, S = 17.0, MW = 443 kDa) (Steensgaard et al., 1992; Kim et al., 2012). Finally, we established the S value for monomers, oligomers and fibrillar amyloid-β42 prepared according to standard protocols (Stine et al., 2011) and verified the quaternary structure with atomic force microscopy.

Statistical analysis

Cumulative survival curves were constructed by the Kaplan–Meier method. Comparisons of survival curves among groups were carried out by the log rank (Mantel–Cox) test. In the comparison of different patient groups, P-values were calculated using ANOVA and two-tailed Fisher’s exact test. A mixed model analysis was conducted to compare the rapidly progressive and slowly progressive Alzheimer’s disease unfolding curves across all Gdn HCl levels. Subject level random intercepts were included, to reflect within subject correlation. All the statistical analyses were performed using SPSS 21 software (SPSS Inc., Chicago, IL).
Results

Demographics, sequencing of genes, and comparative pathology in rapidly and slowly progressive Alzheimer’s disease cohorts

We reviewed records of 276 patients with rapidly progressive or atypical dementia referred to the National Prion Disease Pathology Surveillance Centre (NPDPSC) as probable prion diseases, but which showed no biochemical or genetic evidence of prion disease after PRNP gene sequencing and demonstrated pathological features indistinguishable from Alzheimer’s disease. In 186 cases with an identifiable disease starting date from detailed clinical records and semi-structured telephone interview of patient and/or caregiver at the time of referral, the median duration of the disease was 7.2 months (95% confidence interval 5.9–8.5 months), which was ~15-fold ($P < 0.001$) shorter than 9 years in autopsy-proven Alzheimer’s disease case records ($n = 2605$) obtained from the National Alzheimer’s Coordinating Centre (NACC) database at the University of Washington (Beekly et al., 2007) (Fig. 1A). In all Alzheimer’s disease cases, the Illumina and Sanger Sequencing of APP and PSEN2 genes identified no novel rare variants or known mutations when compared to the reference Alzheimer Disease and Frontotemporal Dementia Mutation Database, and the Exome Variant Server (EVS). In 1 of 78 sequenced cases with rapidly progressive Alzheimer’s disease, we identified a previously reported VRQ2 mutation in exon 5 of PSEN1 (Kim et al., 2007) and this case was excluded from the rapidly progressive Alzheimer’s disease cohort analysis. Next, we excluded cases for which no frozen tissue was available as well as all cases with either an autosomal dominant pattern of the familial form of dementia or pathological features independently associated with cognitive decline (e.g. Lewy bodies, vascular brain injury, or hippocampal sclerosis) and randomly selected 30 cases according to criteria described in detail in the ‘Materials and methods’ section (Table 1). The demographic data distributions, characterized by sample means or proportions, did not significantly differ from all NPDPSC cases and were within the range of cases with rapidly progressive Alzheimer’s disease published by European and Japanese prion centres (Schmidt et al., 2012).

Our second cohort consisted of classical Alzheimer’s disease cases with progression rates and demographics matching the distribution in the NACC data set that were collected at the Case Western Reserve University (CWRU) Memory and Aging Centre (see ‘Materials and methods’ section), and hereafter referred to as slowly progressive Alzheimer’s disease (Table 1). The low frequency of APOE gene e4 allele in our rapidly progressive Alzheimer’s disease ($n = 26$) cohort at the NPDPSC (Fig. 1B and Table 1) agrees with findings from prion centres in Japan and Europe (Schmidt et al., 2011).

Neuropathological evaluation according to the National Institutes of Aging – Alzheimer’s Association guidelines (Montine et al., 2012) suggested a trend toward more cases with less severe pathology in the rapidly progressive Alzheimer’s disease group but the difference was not statistically significant (Fig 1C and D). We also found no differentiating patterns in the morphology of neurofibrillary tangles and amyloid plaques, or their distribution in different anatomical areas. As illustrated in Supplementary Fig. 1, we did not observe α-synuclein deposits or TDP-43 (now known as TARDBP) proteinopathy that could explain the difference in progression rate by comorbid pathology. Additionally, the diffuse and glial deposits of amyloid-β (Akiyama et al., 1999) occur inconsistently in both rapidly progressive and slowly progressive Alzheimer’s disease cases, and if present, constituted a very small proportion of the total amyloid-β deposition (Supplementary Fig. 1). Cumulatively, the consistent very rapid progression rate, genetic, and neuropathological findings of rapidly progressive Alzheimer’s disease in prion centres across various methodologies, populations, and healthcare systems is evidence for a distinct especially malignant form of sporadic Alzheimer’s disease, associated with a low frequency of e4 allele of the APOE gene that is similar to the general population.

The primary goal of the study was to establish conformational structural characteristics of amyloid-β in neuropathologically verified rapidly and slowly progressive Alzheimer’s disease and thus correlation of clinical phenotypes beyond clearly defined disease duration is limited by both small group size and availability of medical records. Nonetheless, we observed a trend toward fewer cases with cognitive symptomatology in the rapidly progressive Alzheimer’s disease cohort at the time of diagnosis when both groups already shared a similar frequency of other neurological and behavioural symptoms (Supplementary Table 1). This asymmetry of cognitive symptomatology, together with rapid progression, is likely responsible for the clinical conclusion of probable prion disease and referrals of rapidly progressive Alzheimer’s disease patients to Prion Centres. However, the prospective longitudinal studies of rapidly progressive Alzheimer’s disease with similarly assessed controls are needed to determine the detailed neurological endophenotypic differences between the groups, as well as external cofactors that may be associated with rapid progression.

Domain display and distribution of amyloid-β42 and amyloid-β40 in rapidly progressive and slowly progressive Alzheimer’s disease

To investigate levels and conformational characteristics of amyloid-β, we adopted an AlphaLISA-formatted CDI (Supplementary Fig. 2A) (Safar et al., 1998; Kim et al., 2011, 2012; Haldiman et al., 2013). This extremely sensitive assay played a critical role in discovering that a
variable proportion of pathogenic prion protein is composed of small protease-sensitive oligomers, and also helped to establish that the conformation of pathogenic prion protein varies between distinct strains of prions (Safar et al., 1998; Kim et al., 2011, 2012; Haldiman et al., 2013). In principle, we adopted the AlphaLISA design with one antibody specific to the N-terminus (mAb 82E1, epitope amyloid-β10-17) and a second antibody specific either to the C-terminus of amyloid-β42 (mAb12F4) or amyloid-β40. The luminescence signal is generated only when the donor and acceptor beads are brought together in close proximity by simultaneous capture of N- and C-terminus of amyloid-β. Measurements performed before and after denaturation with 7 M Gdn HCl at 80°C, expressed as a denatured/native signal (D/N), allow quantitation of the exposure of both domains in the native state, thereby enabling direct comparison of global assembly structures in different brain samples without requiring prior purification (Safar et al., 1998, 2002; Safar, 2012a, b; Prusiner et al., 2004; Kim et al., 2011, 2012). The initial experiments with age-matched sporadic Creutzfeldt-Jakob disease (CJD) and Alzheimer’s disease brains demonstrated high sensitivity and conformational specificity of D/N ratio for amyloid-β42 present in Alzheimer’s disease brains (Supplementary Fig. 3A and B). The conformational sensitivity and relative independence of the D/N ratio on amyloid-β42 concentration in Alzheimer’s disease is shown in Supplementary Fig. 3C.
Compared with slowly progressive Alzheimer’s disease, the cases of rapidly progressive Alzheimer’s disease accumulated more amyloid-β_{42} in the precuneus/posterior cingulate cortex with significantly lower D/N ratios in both cingulate cortex and hippocampus (Fig. 2A and B and Table 1). In contrast, the concentration of amyloid-β_{40} was invariably low in all areas in all cases (Fig. 2B), and the D/N ratio close to 2 suggests that both N- and C-termini are largely exposed in the native state (Fig. 2A and Table 1). This trend toward low D/N ratios was observed in age-matched controls but in these cases for both amyloid-β_{42} and amyloid-β_{40} (Fig. 2A and B, and Supplementary Table 2). Taken together, these data indicate that rapidly progressive Alzheimer’s disease is associated with higher levels of amyloid-β_{42} in the posterior cingulate cortex. The amyloid-β_{42} present in both the posterior cingulate cortex and hippocampus of rapidly progressive Alzheimer’s disease formed either (i) smaller particles; (ii) particles with a differently exposed N- and C-termini of amyloid-β_{42} due to the distinct conformation; or (iii) both. The data obtained in age-matched non-Alzheimer’s disease controls including sporadic CJD indicate that these aspects are not a simple result of ageing.

Conformational stability of amyloid-β_{42} in rapidly progressive and slowly progressive Alzheimer’s disease

To investigate whether observed variations in exposed N- and C-terminal domains of amyloid-β_{42} in rapidly progressive Alzheimer’s disease are due to conformational differences, we employed a conformational stability assay (Supplementary Fig. 2B) (Safar and Prusiner, 1998). Even relatively small variations in protein structure can be determined by measuring conformational stability in a denaturant such as Gdn HCl (Shirley, 1995). Based on this concept, we designed a procedure in which misfolded protein in brain tissue is first exposed to the denaturant Gdn HCl, and then exposed to monoclonal antibody against epitopes that are hidden in the native conformation (Safar and Prusiner, 1998). As the concentration of Gdn HCl increases, the amyloid form of the protein unfolds and the epitopes become available to antibody binding. The Gdn HCl value found at the half-maximal denaturation ([Gdn HCl]_{1/2}) was used as a measure of the relative conformational stability of a protein. If the compared proteins have the same amino acid sequence, then the differences in stability are evidence of different conformations (Shirley, 1995; Safar et al., 1998; Safar, 2012a, b).

Cumulative plots of unfolding curves were obtained for amyloid-β_{42} present in brain homogenates that were prepared from hippocampi of patients with rapidly progressive Alzheimer’s disease (n = 10) and slowly progressive Alzheimer’s disease (n = 10) (Fig 3A and B); these plots indicate a remarkable variability of amyloid-β_{42} unfolding, and instead of the expected simple biphasic transition from native to denatured state, the plots display curves with up to three stages of unfolding in all Alzheimer’s disease cases. Each of these stages represents amyloid-β_{42} with increasing resistance to denaturant; the least populated and the least stable amyloid-β_{42} conformers unfold between 2.5 and

Table 1 Demographics and descriptive statistics of patients with rapidly progressive Alzheimer’s disease (n = 18)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rapidly progressive Alzheimer’s disease</th>
<th>Slowly progressive Alzheimer’s disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>F/M 15/15</td>
<td>F/M 14/14</td>
</tr>
<tr>
<td>Age</td>
<td>30 44.0 87.0 60.0 ± 1.6</td>
<td>18 61 101 82 ± 2.8</td>
</tr>
<tr>
<td>Education</td>
<td>years 8 11 16 13.1 ± 2.0</td>
<td>18 11 20 13.6 ± 3.3</td>
</tr>
<tr>
<td>APOE</td>
<td>e2 2 (3.8) n (%)</td>
<td>e2 0 (0) n (%)</td>
</tr>
<tr>
<td>allele</td>
<td>e3 33 (63.5) n (%)</td>
<td>e3 10 (35.7) n (%)</td>
</tr>
<tr>
<td>frequency</td>
<td>e4 17 (32.7) n (%)</td>
<td>e4 18 (64.3) n (%)</td>
</tr>
<tr>
<td>Disease duration</td>
<td>From neutol. follow-up</td>
<td>20 0.8 36.0 11.6 ± 1.7</td>
</tr>
<tr>
<td>PPC</td>
<td>ng/ml 26 128.0 1598.3 790.3 ± 67.9</td>
<td>18 306.9 1216.3 560.1 ± 71.7</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>ng/ml 26 97.2 1675.2 481.6 ± 74.4</td>
<td>18 201.0 1155.8 476.3 ± 60.7</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>ng/ml 30 6.5 1239.1 136.8 ± 45.0</td>
<td>18 7.9 457.0 149.6 ± 43.4</td>
</tr>
<tr>
<td>PPC</td>
<td>ng/ml 13 4.3 54.7 19.2 ± 3.5</td>
<td>7 2.8 42.1 78.3 ± 41.0</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>D/N ratio 13 0.8 11.2 3.3 ± 0.7</td>
<td>7 0.7 17.7 5.5 ± 1.8</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>D/N ratio 15 0.7 24.2 3.5 ± 0.8</td>
<td>7 1.0 7.8 3.0 ± 0.6</td>
</tr>
</tbody>
</table>

Each of these stages represents amyloid-β_{42} with increasing resistance to denaturant; the least populated and the least stable amyloid-β_{42} conformers unfold between 2.5 and...
4.5 M of Gdn HCl and the second more abundant population of conformers unfolds between 4.5 and 6 M of Gdn HCl. Interestingly, the third pool of amyloid-β42 conformers is remarkably resistant to denaturation, and in some samples, a variable fraction of amyloid-β42 did not complete unfolding even in 7 M of Gdn HCl at 80°C. These differences indicated up to three distinct populations of conformers in each individual sample. Although the amyloid-β42 accumulated in the cortex of rapidly progressive Alzheimer’s disease cases is conformationally heterogeneous, the averaged data and differential curves show a statistically significant difference from slowly progressive Alzheimer’s disease at 5.5 M Gdn HCl (Fig. 3C) using a mixed model analysis of the unfolding curves across all Gdn HCl levels in rapidly progressive and slowly progressive Alzheimer’s disease groups (P = 0.02). Moreover, sequential ANOVA comparing the values in each group at different Gdn HCl concentrations showed the same trend (P = 0.013) and the levels of these conformers in all rapidly progressive and slowly progressive Alzheimer’s disease cases correlate inversely with the disease duration in non-linear regression analysis (Fig. 3D). Cumulatively, these findings indicate that (i) a remarkably wide spectrum of amyloid-β42 structures exist in different cases of Alzheimer’s disease; (ii) that they group into three distinct sets of conformers present in different proportions in each Alzheimer’s disease case; and (iii) that amyloid-β42 in rapidly progressive Alzheimer’s disease is conformationally more heterogeneous than in slowly progressive Alzheimer’s disease with significantly higher levels of conformers with intermediate stability that unfold at ~5.5 M Gdn HCl.

The size and composition of native amyloid-β particles present in rapidly progressive and slowly progressive Alzheimer’s disease

To measure the relative levels of specific particles (assemblies) of native (non-denatured) amyloid-β42 and amyloid-β40 present in brain tissue, we separated the brain samples homogenized in the non-denaturing detergent Sarkosyl, with velocity sedimentation in sucrose gradients using high-speed centrifugation. Sarkosyl is a non-denaturing detergent with a low aggregation number (~2), and has been used extensively in isolation and conformational studies of native infectious prions, including prion oligomers (Caughey et al., 1991; Safar et al., 1993a, b, 1994; Prusiner et al., 2004; Kim et al., 2011, 2012). Calibration experiments with native proteins and synthetic amyloid-β42 indicate that Sarkosyl does not affect the expected sedimentation velocity of the monomeric, oligomeric or fibrillar assemblies prepared in vitro (Supplementary Fig. 4) and maintains their size and morphology as judged by atomic force microscopy (Supplementary Fig. 5). The calculated sedimentation velocity of the oligomeric assembly of...
synthetic amyloid-β42 indicated an average 50 monomers, which is expected for the dimethyl sulphoxide oligomer protocol from size-exclusion chromatography experiments (LeVine, 2004; Stine et al., 2011).

We identified three major peaks in the sedimentation velocity profiles of total brain cortex followed by CDI, indicating three major populations of amyloid-β42 particles in Alzheimer’s disease: floating, intermediate, and rapidly sedimenting fractions (Fig. 4B and C). Based on the s0.17 value and calibration with standard proteins, we estimate that the floating fraction was composed of 1–32 monomers of amyloid-β42, the intermediate of 32–750 monomers, and the rapidly sedimenting fraction of >3000 monomers of amyloid-β42 (Fig. 4A). Although the sizes of the particles found in the floating and intermediate oligomer fractions of amyloid-β42 in rapidly progressive and slowly progressive Alzheimer’s disease cases were the same, the markedly low D/N ratios in rapidly progressive Alzheimer’s disease are evidence for differently exposed N- and C-terminal domains, and thus indicate the presence of differing conformation (Fig. 4B). In contrast, the sedimentation velocity profiles of amyloid-β40 investigated in the same rapidly progressive and slowly progressive Alzheimer’s disease samples showed a D/N ratio close to 2 throughout the entire sucrose gradient in all cases (Fig. 4D and E). In the posterior cingulate cortex and hippocampus, the rapidly progressive Alzheimer’s disease cases accumulated lower levels of floating amyloid-β42 assemblies, and more particles composed of 30–130 monomers of amyloid-β42 (Fig. 4C). In marked distinction, the brain amyloid-β40 demonstrated no evidence of a major particle pool. The age-matched non-Alzheimer’s disease cases showed low D/N ratio through the whole gradient for both amyloid-β42 and amyloid-β40 and no evidence of formation of distinct particle composed of amyloid-β42 or amyloid-β40 (Fig. 4H and I). We concluded from these experiments that amyloid-β40: (i) exists with largely exposed N- and C-terminal domains; (ii) does not participate in assemblies of amyloid-β42; and (iii) does not form a discernible major particle population. Furthermore, the cases with rapidly progressive Alzheimer’s disease accumulated lower levels of particles composed of ≤30 monomers and higher levels of amyloid-β42 particles composed of 30–100 monomers in the posterior cingulate cortex and hippocampus. These assemblies demonstrated differently exposed N- and C-termini than those of the same size present in the cases with slowly progressive Alzheimer’s disease. We concluded that these particles have different conformational...
structures in rapidly progressive than in slowly progressive Alzheimer’s disease. These aspects are not a simple result of ageing as evidenced with the data obtained from age-matched non-Alzheimer’s disease controls.

To investigate the composition of the complete pool of amyloid-β particles present in the brain, we performed gradient SDS PAGE and western blots on fractions separated by sedimentation velocity. A uniform ladder of bands of amyloid-β ranging from 4.5 kDa to 55 kDa was observed at different levels in all sucrose gradient fractions. This indicates that SDS had partially dissociated and denatured these native particles of different sizes and structures, and sorted them on SDS PAGE into similar mixtures of monomers and oligomers (Fig. 5 and Supplementary Fig. 6). Nevertheless, in rapidly progressive Alzheimer’s disease cases densitometry demonstrated a higher proportion of amyloid-β oligomers in the sucrose gradient fractions with low sedimentation velocity. Cumulatively, even though western blots generally have lower sensitivity and a more narrow dynamic detection range than AlphaLISA-formatted CDI, the data showed higher levels of oligomeric amyloid-β particles in cases with rapidly progressive Alzheimer’s disease and thus confirmed the results from previous CDI experiments.

Discussion

Two unsettled factors for sporadic Alzheimer’s disease are: (i) the extensive variability of progression rates and phenotypes (Wilkosz et al., 2010; Schmidt et al., 2011); and (ii)
discrepancies between amyloid-β deposit levels and clinical disease severity (Masters and Selkoe, 2012). However, using novel biophysical techniques to inventory the structural species of amyloid-β in the brain, we have defined a new variable in Alzheimer’s disease pathogenesis; namely, a broad spectrum of amyloid-β42 particles that have distinct conformational characteristics. Remarkably, the link to disease duration did not emanate from the levels of different amyloid-β42 particles per se, but from their distinct conformations.

The conformational heterogeneity of brain amyloid-β42 that we uncovered in sporadic Alzheimer’s disease is striking, and implies the presence of numerous distinct structures that may have very different toxicity and propagation rates in the pathogenesis of Alzheimer’s disease. Although disease-causing mutations in the amyloid-β precursor and its processing genes have indisputably established the central role of amyloid-β in the pathogenesis of early onset Alzheimer’s disease, the loose correlations between amyloid plaque load and severity of sporadic Alzheimer’s disease (Masters and Selkoe, 2012) have generated a pathogenetic conundrum (Colom et al., 2013). Consequently, these discrepancies, and the structural plasticity of synthetic amyloid-β peptide observed in vitro, has pointed to the need to improve our understanding of the structure of amyloid-β in brain tissue. To fill this void, we elected to determine the domain display and the stability of amyloid-β using sandwich CDI (Safar et al., 1998), which allows us to compare different conformational structures formed by the same protein or peptide. If these structures have the same amino acid sequence, then the difference in the domain display and the susceptibility to denaturation (stability) is a reliable indicator of a distinct native conformation in brain tissue (Shirley, 1995; Safar et al., 1998). This technique has been extensively validated and is used in prion laboratories worldwide (Peretz et al., 2002; Colby et al., 2010; Choi et al., 2011a, b; Pirisinu et al., 2011). Determining stability using the sandwich CDI allows us to compare the global stability of a protein directly in brain tissue over a concentration range of five orders of magnitude, with sensitivity ~4 pg/ml; as a result, the procedure yields highly reproducible curves that differentiate various prion conformers, which originate from distinct strains of prions (Safar et al., 1998; Safar, 2012a, b).

Surprisingly, we found evidence of up to three populations of amyloid-β42 conformers with varying structures. Despite the extensive conformational variability of amyloid-β42 in rapidly progressive Alzheimer’s disease, we found a common pattern of significantly more conformers that were less stable and unfolded at 3.5 and 5.5 M of denaturant (Fig. 3). The lower stability of these amyloid-β42 structures suggests that they may be more susceptible to dissociation in vivo, in contrast to the more abundant and very stable conformers at ≥ 7M Gdn HCl. In prions, lower stability correlates with easier fragmentation, which is responsible for faster replication, and more rapid progression of disease (Kim et al., 2011, 2012). Even though the extraordinary structural diversity of amyloid-β42 in rapidly progressive Alzheimer’s disease far exceeds the structural heterogeneity of human prions (Kim et al., 2011, 2012), whether this fundamental paradigm applies to amyloid-β42 in Alzheimer’s disease has yet to be investigated.

![Image](http://brain.oxfordjournals.org/)

Figure 5 Preponderance of amyloid-β oligomeric species in rapidly progressive Alzheimer’s disease. The comparative western blots of sucrose gradient fractions from hippocampus and precuneus/posterior cingulate cortex in rapidly progressive Alzheimer’s disease (n = 12) and slowly progressive Alzheimer’s disease (n = 12). (A and B) Calibration and typical western blot of sucrose gradient fractions of rapidly progressive and slowly progressive Alzheimer’s disease cases with biotinylated mAb 6E10. The asterisk indicates floating APP100; arrows (↓) point to the bands of a proteins cross-reacting with streptavidin-peroxidase complex. (C) The relative proportion of major bands of amyloid-β oligomers in top three floating fractions (#10-8) were compared with total density of a given band in all fractions from hippocampus and precuneus/posterior cingulate cortex in rapidly progressive Alzheimer’s disease (n = 12) and slowly progressive Alzheimer’s disease (n = 12). The densitometry was performed with ImageJ software and the bars represent cumulative average ± SEM for each band; the molecular mass of the markers is in kDa. Statistical significance at *P < 0.05, **P < 0.01, and ***P < 0.001 was determined with ANOVA. rpAD = rapidly progressing Alzheimer’s disease; spAD = slowly progressing Alzheimer’s disease.
Previous studies posit a toxic subform of amyloid-β to explain the discrepancy between amyloid load and the onset of clinical symptoms in Alzheimer’s disease (Masters and Selkoe, 2012; Lesne et al., 2013). But there is an ongoing debate if, and which, of the toxic oligomers observed in vitro exist in the brains of patients with Alzheimer’s disease, and what role they play in the Alzheimer’s disease pathogenesis (Benilova et al., 2012; Hayden and Teplow, 2013). Our experiments provide direct evidence for a broad spectrum of amyloid-β_{42} particles in the Alzheimer’s disease brain, which group into three major peaks, composed of ~30, ~100, and > 3000 monomers. The differently exposed N- and C-terminal domains of amyloid-β_{42} in these native particles suggest that different size particles represent distinct structures. In marked contrast, amyloid-β_{40} did not form a major particle of discernible size, did not participate in the formation of the major amyloid-β_{42} particles, and appears to exist mostly as a uniform monomeric peptide. In both rapidly progressive and slowly progressive Alzheimer’s disease, amyloid-β_{42} particles composed of > 3000 monomers shared similar levels and domain displays. However, rapidly progressive Alzheimer’s disease cases accumulated fewer ~30-mers and more ~100-mers, with more exposed N- and C-terminal domains in the native state than slowly progressive Alzheimer’s disease cases. We also demonstrated that even identically sized particles may have different conformations. Thus far, we have not yet identified whether these differences are due to the structure of the monomeric building block or the way the monomers are assembled (quaternary structure), but the prevailing view is that both these aspects must be thermodynamically and kinetically linked (Tycko, 2006; Paravastu et al., 2008).

Cumulatively, our data demonstrate that different rates of clinical decline in Alzheimer’s disease are linked to different polymorphisms in the APOE gene, and distinct conformational characteristics of the amyloid-β_{42}. To determine whether additional external disease modifiers, such as early life environment, education, occupation, and toxic exposures contribute to the rapidly progressive Alzheimer’s disease endophenotype will require prospective investigations of human prion diseases where the synergy infer the paradigm that emerged recently in Alzheimer’s disease phenotype, in parallel with establishing detailed characteristics of different conformational subsets of brain amyloid-β_{42}.

Acknowledgements

The authors are grateful to the patient’s families, the CJD Foundation, all the members of the National Prion Disease Pathology Surveillance Centre for their help and review of clinical data. The authors would like to thank the NHLBI GO Exome Sequencing Project and its ongoing studies which produced and provided exome variant calls for comparison: the Lung GO Sequencing Project (HL-102923), the WHI Sequencing Project (HL-102924), the Broad GO Sequencing Project (HL-102925), the Seattle GO Sequencing Project (HL-102926) and the Heart GO Sequencing Project (HL-103010).

Funding

The NACC database is funded by NIA Grant U01 AG016976 and this work was supported by grants from NINDS (NS074317), CDC (UR8/CCU515004), and the Spitz Foundation.

Supplementary material

Supplementary material is available at Brain online.

References

Guo JI, Lee VM. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBs Lett 2013; 587: 717–23.

