OUP user menu

Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis

Giovanni Nardo, Raffaele Iennaco, Nicolò Fusi, Paul R. Heath, Marianna Marino, Maria C. Trolese, Laura Ferraiuolo, Neil Lawrence, Pamela J. Shaw, Caterina Bendotti
DOI: http://dx.doi.org/10.1093/brain/awt250 awt250 First published online: 24 September 2013


Amyotrophic lateral sclerosis is heterogeneous with high variability in the speed of progression even in cases with a defined genetic cause such as superoxide dismutase 1 (SOD1) mutations. We reported that SOD1G93A mice on distinct genetic backgrounds (C57 and 129Sv) show consistent phenotypic differences in speed of disease progression and life-span that are not explained by differences in human SOD1 transgene copy number or the burden of mutant SOD1 protein within the nervous system. We aimed to compare the gene expression profiles of motor neurons from these two SOD1G93A mouse strains to discover the molecular mechanisms contributing to the distinct phenotypes and to identify factors underlying fast and slow disease progression. Lumbar spinal motor neurons from the two SOD1G93A mouse strains were isolated by laser capture microdissection and transcriptome analysis was conducted at four stages of disease. We identified marked differences in the motor neuron transcriptome between the two mice strains at disease onset, with a dramatic reduction of gene expression in the rapidly progressive (129Sv-SOD1G93A) compared with the slowly progressing mutant SOD1 mice (C57-SOD1G93A) (1276 versus 346; Q-value ≤ 0.01). Gene ontology pathway analysis of the transcriptional profile from 129Sv-SOD1G93A mice showed marked downregulation of specific pathways involved in mitochondrial function, as well as predicted deficiencies in protein degradation and axonal transport mechanisms. In contrast, the transcriptional profile from C57-SOD1G93A mice with the more benign disease course, revealed strong gene enrichment relating to immune system processes compared with 129Sv-SOD1G93A mice. Motor neurons from the more benign mutant strain demonstrated striking complement activation, over-expressing genes normally involved in immune cell function. We validated through immunohistochemistry increased expression of the C3 complement subunit and major histocompatibility complex I within motor neurons. In addition, we demonstrated that motor neurons from the slowly progressing mice activate a series of genes with neuroprotective properties such as angiogenin and the nuclear factor (erythroid-derived 2)-like 2 transcriptional regulator. In contrast, the faster progressing mice show dramatically reduced expression at disease onset of cell pathways involved in neuroprotection. This study highlights a set of key gene and molecular pathway indices of fast or slow disease progression which may prove useful in identifying potential disease modifiers responsible for the heterogeneity of human amyotrophic lateral sclerosis and which may represent valid therapeutic targets for ameliorating the disease course in humans.

  • amyotrophic lateral sclerosis
  • genetic background
  • immune system
  • motor neurons
  • SOD1
  • Abbreviations
    amyotrophic lateral sclerosis
    major histocompatibility complex I
    nuclear factor (erythroid-derived 2)-like 2
    ubiquitin C-terminal hydrolase 37
    probability of positive log ratio
  • View Full Text